Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Ann Rheum Dis ; 83(8): 984-997, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38503474

RESUMEN

OBJECTIVES: To investigate the mechanism by which intestinal epithelial cell (IEC) death induces arthritis. METHODS: IEC death was assessed by staining for necroptosis and apoptosis markers and fluorescence in situ hybridisation at different time points during collagen-induced arthritis (CIA). During the development of CIA, messenger RNA (mRNA) sequencing was performed, followed by Gene Ontology enrichment analysis of differentially expressed genes. Mice deficient for hypoxia-inducible factor 1α (Hif1a) in IECs (Hif1a ∆IEC) were generated and induced for arthritis. mRNA sequencing, chromatin immunoprecipitated (ChIP) DNA sequencing and ChIP-qualitative PCR were performed on IECs from Hif1a ∆IEC mice and littermate controls. Effects of HIF1α stabilisation by inhibition of prolyl hydroxylase domain-containing enzymes and treatment with the inhibitor of receptor-interacting protein kinase-3 (RIPK3) were tested in intestinal organoids and in CIA. RESULTS: IEC underwent apoptotic and necroptotic cell death at the onset of arthritis, leading to impaired gut barrier function. HIF1α was identified as one of the most upregulated genes in IECs during the onset of arthritis. Deletion of Hif1a in IEC enhanced IEC necroptosis, triggered intestinal inflammation and exacerbated arthritis. HIF1α was found to be a key transcriptional repressor for the necroptosis-inducing factor RIPK3. Enhanced RIPK3 expression, indicating necroptosis, was also found in the intestinal epithelium of patients with new-onset rheumatoid arthritis. Therapeutic stabilisation of HIF1α as well as small-molecule-based RIPK3 inhibition rescued intestinal necroptosis in vitro and in vivo and suppressed the development of arthritis. CONCLUSION: Our results identify IEC necroptosis as a critical link between the gut and the development of arthritis.


Asunto(s)
Apoptosis , Artritis Experimental , Subunidad alfa del Factor 1 Inducible por Hipoxia , Mucosa Intestinal , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Artritis Experimental/metabolismo , Artritis Experimental/patología , Artritis Experimental/genética , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Células Epiteliales/metabolismo , Humanos
2.
Ann Rheum Dis ; 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710307

RESUMEN

OBJECTIVE: To investigate how the mucosal barrier in the intestine influences the development of arthritis, considering that metabolic changes in the intestinal epithelium influence its barrier function. METHODS: Intestinal hypoxia inducible factor (HIF)-2α expression was assessed before, at onset and during experimental arthritis and human rheumatoid arthritis (RA). Intestinal epithelial cell-specific HIF2α conditional knock-out mice were generated (HIF2α∆IEC) and subjected to collagen-induced arthritis. Clinical and histological courses of arthritis were recorded; T-cell and B-cell subsets were analysed in the gut and secondary lymphatic organs; and intestinal epithelial cells were subjected to molecular mRNA sequencing in HIF2α∆IEC and littermate control mice. The gut intestinal HIF2α target genes were delineated by chromatin immunoprecipitation and luciferase experiments. Furthermore, pharmacological HIF2α inhibitor PT2977 was used for inhibition of arthritis. RESULTS: Intestinal HIF2α expression peaked at onset of experimental arthritis and RA. Conditionally, deletion of HIF2α in gut epithelial cells inhibited arthritis and was associated with improved intestinal barrier function and less intestinal and lymphatic Th1 and Th17 activation. Mechanistically, HIF2α induced the transcription of the pore-forming claudin (CLDN)-15, which inhibits intestinal barrier integrity. Furthermore, treatment with HIF2α inhibitor decreased claudin-15 expression in epithelial cells and inhibited arthritis. CONCLUSION: These findings show that the HIF2α-CLDN15 axis is critical for the breakdown of intestinal barrier function at onset of arthritis, highlighting the functional link between intestinal homeostasis and arthritis.

3.
Cancer Lett ; 590: 216866, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38589005

RESUMEN

Bone metastasis is a common complication of certain cancers such as melanoma. The spreading of cancer cells into the bone is supported by changes in the bone marrow environment. The specific role of osteocytes in this process is yet to be defined. By RNA-seq and chemokines screening we show that osteocytes release the chemokine CXCL5 when they are exposed to melanoma cells. Osteocytes-mediated CXCL5 secretion enhanced the migratory and invasive behaviour of melanoma cells. When the expression of the CXCL5 receptor, CXCR2, was down-regulated in melanoma cells in vitro, we observed a significant decrease in melanoma cell migration in response to osteocytes. Furthermore, melanoma cells with down-regulated CXCR2 expression showed less bone metastasis and less bone loss in the bone metastasis model in vivo. Furthermore, when simultaneously down-regulating CXCL5 in osteocytes and CXCR2 in melanoma cells, melanoma progression was abrogated in vivo. In summary, these data suggest a significant role of osteocytes in bone metastasis of melanoma, which is mediated through the CXCL5-CXCR2 pathway.


Asunto(s)
Neoplasias Óseas , Movimiento Celular , Quimiocina CXCL5 , Melanoma , Osteocitos , Receptores de Interleucina-8B , Osteocitos/metabolismo , Osteocitos/patología , Neoplasias Óseas/secundario , Neoplasias Óseas/metabolismo , Quimiocina CXCL5/metabolismo , Quimiocina CXCL5/genética , Animales , Melanoma/metabolismo , Melanoma/patología , Melanoma/secundario , Melanoma/genética , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Ratones , Línea Celular Tumoral , Humanos , Transducción de Señal , Melanoma Experimental/patología , Melanoma Experimental/metabolismo , Ratones Endogámicos C57BL
4.
Cell Rep ; 42(7): 112713, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37421628

RESUMEN

Although it is known that psoriasis is strongly associated with obesity, the mechanistic connection between diet and skin lesions is not well established. Herein, we showed that only dietary fat, not carbohydrates or proteins, exacerbates psoriatic disease. Enhanced psoriatic skin inflammation was associated with changes in the intestinal mucus layer and microbiota composition by high-fat diet (HFD). Change of intestinal microbiota by vancomycin treatment effectively blocked activation of psoriatic skin inflammation by HFD, inhibited the systemic interleukin-17 (IL-17) response, and led to increased mucophilic bacterial species such as Akkermansia muciniphila. By using IL-17 reporter mice, we could show that HFD facilitates IL-17-mediated γδ T cell response in the spleen. Notably, oral gavage with live or heat-killed A. muciniphila effectively inhibited HFD-induced enhancement of psoriatic disease. In conclusion, HFD exacerbates psoriatic skin inflammation through changing the mucus barrier and the intestine microbial composition, which leads to an enhanced systemic IL-17 response.


Asunto(s)
Dermatitis , Microbioma Gastrointestinal , Psoriasis , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Interleucina-17/metabolismo , Psoriasis/inducido químicamente , Inflamación/metabolismo , Ratones Endogámicos C57BL
5.
Front Cell Dev Biol ; 10: 974851, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578780

RESUMEN

Introduction: Increasing evidences have shown that hypoxia and the immune microenvironment play vital roles in the development of osteosarcoma. However, reliable gene signatures based on the combination of hypoxia and the immune status for prognostic prediction of osteosarcoma have so far not been identified. Methods: The individual hypoxia and immune status of osteosarcoma patients were identified with transcriptomic profiles of a training cohort from the TARGET database using ssGSEA and ESTIMATE algorithms, respectively. Lasso regression and stepwise Cox regression were performed to develop a hypoxia-immune-based gene signature. An independent cohort from the GEO database was used for external validation. Finally, a nomogram was constructed based on the gene signature and clinical features to improve the risk stratification and to quantify the risk assessment for individual patients. Results: Hypoxia and the immune status were significantly associated with the prognosis of osteosarcoma patients. Seven hypoxia- and immune-related genes (BNIP3, SLC38A5, SLC5A3, CKMT2, S100A3, CXCL11 and PGM1) were identified to be involved in our prognostic signature. In the training cohort, the prognostic signature discriminated high-risk patients with osteosarcoma. The hypoxia-immune-based gene signature proved to be a stable and predictive method as determined in different datasets and subgroups of patients. Furthermore, a nomogram based on the prognostic signature was generated to optimize the risk stratification and to quantify the risk assessment. Similar results were validated in an independent GEO cohort, confirming the stability and reliability of the prognostic signature. Conclusion: The hypoxia-immune-based prognostic signature might contribute to the optimization of risk stratification for survival and personalized management of osteosarcoma patients.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda