Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 2.165
Filtrar
1.
Cell ; 153(6): 1228-38, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23683578

RESUMEN

Reprogramming somatic cells into pluripotent embryonic stem cells (ESCs) by somatic cell nuclear transfer (SCNT) has been envisioned as an approach for generating patient-matched nuclear transfer (NT)-ESCs for studies of disease mechanisms and for developing specific therapies. Past attempts to produce human NT-ESCs have failed secondary to early embryonic arrest of SCNT embryos. Here, we identified premature exit from meiosis in human oocytes and suboptimal activation as key factors that are responsible for these outcomes. Optimized SCNT approaches designed to circumvent these limitations allowed derivation of human NT-ESCs. When applied to premium quality human oocytes, NT-ESC lines were derived from as few as two oocytes. NT-ESCs displayed normal diploid karyotypes and inherited their nuclear genome exclusively from parental somatic cells. Gene expression and differentiation profiles in human NT-ESCs were similar to embryo-derived ESCs, suggesting efficient reprogramming of somatic cells to a pluripotent state.


Asunto(s)
Línea Celular , Células Madre Embrionarias/citología , Fibroblastos/citología , Técnicas de Transferencia Nuclear , Adulto , Animales , Blastocisto/citología , Fusión Celular , Núcleo Celular/genética , Separación Celular , Femenino , Feto/citología , Humanos , Macaca mulatta , Mitocondrias/genética , Oocitos/citología , Oocitos/metabolismo , Piel/citología
2.
Cell ; 148(1-2): 285-95, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22225614

RESUMEN

Totipotent cells in early embryos are progenitors of all stem cells and are capable of developing into a whole organism, including extraembryonic tissues such as placenta. Pluripotent cells in the inner cell mass (ICM) are the descendants of totipotent cells and can differentiate into any cell type of a body except extraembryonic tissues. The ability to contribute to chimeric animals upon reintroduction into host embryos is the key feature of murine totipotent and pluripotent cells. Here, we demonstrate that rhesus monkey embryonic stem cells (ESCs) and isolated ICMs fail to incorporate into host embryos and develop into chimeras. However, chimeric offspring were produced following aggregation of totipotent cells of the four-cell embryos. These results provide insights into the species-specific nature of primate embryos and suggest that a chimera assay using pluripotent cells may not be feasible.


Asunto(s)
Masa Celular Interna del Blastocisto/citología , Quimera , Células Madre Embrionarias/citología , Macaca mulatta , Animales , Embrión de Mamíferos/citología , Especificidad de la Especie
3.
Cell ; 149(3): 630-41, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22541433

RESUMEN

In female mouse embryos, somatic cells undergo a random form of X chromosome inactivation (XCI), whereas extraembryonic trophoblast cells in the placenta undergo imprinted XCI, silencing exclusively the paternal X chromosome. Initiation of imprinted XCI requires a functional maternal allele of the X-linked gene Rnf12, which encodes the ubiquitin ligase Rnf12/RLIM. We find that knockout (KO) of Rnf12 in female mammary glands inhibits alveolar differentiation and milk production upon pregnancy, with alveolar cells that lack RLIM undergoing apoptosis as they begin to differentiate. Genetic analyses demonstrate that these functions are mediated primarily by the paternal Rnf12 allele due to nonrandom maternal XCI in mammary epithelial cells. These results identify paternal Rnf12/RLIM as a critical survival factor for milk-producing alveolar cells and, together with population models, reveal implications of transgenerational epigenetic inheritance.


Asunto(s)
Supervivencia Celular , Glándulas Mamarias Animales/citología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Epigénesis Genética , Femenino , Impresión Genómica , Masculino , Glándulas Mamarias Animales/fisiología , Ratones , Embarazo , Ubiquitina-Proteína Ligasas/genética , Inactivación del Cromosoma X
4.
Nature ; 600(7887): 54-58, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34666338

RESUMEN

The Moon has a magmatic and thermal history that is distinct from that of the terrestrial planets1. Radioisotope dating of lunar samples suggests that most lunar basaltic magmatism ceased by around 2.9-2.8 billion years ago (Ga)2,3, although younger basalts between 3 Ga and 1 Ga have been suggested by crater-counting chronology, which has large uncertainties owing to the lack of returned samples for calibration4,5. Here we report a precise lead-lead age of 2,030 ± 4 million years ago for basalt clasts returned by the Chang'e-5 mission, and a 238U/204Pb ratio (µ value)6 of about 680 for a source that evolved through two stages of differentiation. This is the youngest crystallization age reported so far for lunar basalts by radiometric dating, extending the duration of lunar volcanism by approximately 800-900 million years. The µ value of the Chang'e-5 basalt mantle source is within the range of low-titanium and high-titanium basalts from Apollo sites (µ value of about 300-1,000), but notably lower than those of potassium, rare-earth elements and phosphorus (KREEP) and high-aluminium basalts7 (µ value of about 2,600-3,700), indicating that the Chang'e-5 basalts were produced by melting of a KREEP-poor source. This age provides a pivotal calibration point for crater-counting chronology in the inner Solar System and provides insight on the volcanic and thermal history of the Moon.

5.
Nature ; 577(7788): 79-84, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31853069

RESUMEN

Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms1-3. Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.


Asunto(s)
Genoma de Planta , Nymphaea/genética , Filogenia , Flores/genética , Flores/metabolismo , Nymphaea/metabolismo , Odorantes/análisis
6.
J Neurosci ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060177

RESUMEN

In retinitis pigmentosa (RP), rod and cone photoreceptors degenerate, depriving downstream neurons of light-sensitive input, leading to vision impairment or blindness. Although downstream neurons survive, some undergo morphological and physiological remodeling. Bipolar cells (BCs) link photoreceptors, which sense light, to retinal ganglion cells (RGCs), which send information to the brain. While photoreceptor loss disrupts input synapses to BCs, whether BC output synapses remodel has remained unknown. Here we report that synaptic output from BCs plummets in RP mouse models of both sexes owing to loss of voltage-gated Ca2+ channels. Remodeling reduces the reliability of synaptic output to repeated optogenetic stimuli, causing RGC firing to fail at high stimulus frequencies. Fortunately, functional remodeling of BCs can be reversed by inhibiting the retinoic acid receptor (RAR). RAR inhibitors targeted to BCs present a new therapeutic opportunity for mitigating detrimental effects of remodeling on signals initiated either by surviving photoreceptors or by vision-restoring tools.Significance Statement Photoreceptor degenerative disorders such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD) lead to vision impairment or blindness. Vision mediated by surviving photoreceptors or artificial vision restoration technologies, rely on bipolar cells retaining normal function despite photoreceptor death. We find that in two animal models of RP, synaptic transmission from both rod and cone bipolar cells is severely impaired owing to diminished voltage-gated calcium current, preventing postsynaptic amacrine cells and retinal ganglion cells from properly receiving and encoding visual information. We find that an inhibitor of the retinoic acid receptor restores both the calcium current and synaptic release from bipolar cells. These discoveries about bipolar cells reveal a new functional deficit in blindness and a potential therapeutically important solution.

7.
Circulation ; 149(19): 1501-1515, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38223978

RESUMEN

BACKGROUND: During the neonatal stage, the cardiomyocyte undergoes a constellation of molecular, cytoarchitectural, and functional changes known collectively as cardiomyocyte maturation to increase myocardial contractility and cardiac output. Despite the importance of cardiomyocyte maturation, the molecular mechanisms governing this critical process remain largely unexplored. METHODS: We leveraged an in vivo mosaic knockout system to characterize the role of Carm1, the founding member of protein arginine methyltransferase, in cardiomyocyte maturation. Using a battery of assays, including immunohistochemistry, immuno-electron microscopy imaging, and action potential recording, we assessed the effect of loss of Carm1 function on cardiomyocyte cell growth, myofibril expansion, T-tubule formation, and electrophysiological maturation. Genome-wide transcriptome profiling, H3R17me2a chromatin immunoprecipitation followed by sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing were used to investigate the mechanisms by which CARM1 (coactivator-associated arginine methyltransferase 1) regulates cardiomyocyte maturation. Finally, we interrogated the human syntenic region to the H3R17me2a chromatin immunoprecipitation followed by sequencing peaks for single-nucleotide polymorphisms associated with human heart diseases. RESULTS: We report that mosaic ablation of Carm1 disrupts multiple aspects of cardiomyocyte maturation cell autonomously, leading to reduced cardiomyocyte size and sarcomere thickness, severe loss and disorganization of T tubules, and compromised electrophysiological maturation. Genomics study demonstrates that CARM1 directly activates genes that underlie cardiomyocyte cytoarchitectural and electrophysiological maturation. Moreover, our study reveals significant enrichment of human heart disease-associated single-nucleotide polymorphisms in the human genomic region syntenic to the H3R17me2a chromatin immunoprecipitation followed by sequencing peaks. CONCLUSIONS: This study establishes a critical and multifaceted role for CARM1 in regulating cardiomyocyte maturation and demonstrates that deregulation of CARM1-dependent cardiomyocyte maturation gene expression may contribute to human heart diseases.


Asunto(s)
Epigénesis Genética , Miocitos Cardíacos , Proteína-Arginina N-Metiltransferasas , Animales , Humanos , Ratones , Diferenciación Celular/genética , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo
9.
Mol Ther ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38937970

RESUMEN

Alveolar bone loss in elderly populations is highly prevalent and increases the risk of tooth loss, gum disease susceptibility, and facial deformity. Unfortunately, there are very limited treatment options available. Here, we developed a bone-targeted gene therapy that reverses alveolar bone loss in patients with osteoporosis by targeting the adaptor protein Schnurri-3 (SHN3). SHN3 is a promising therapeutic target for alveolar bone regeneration, because SHN3 expression is elevated in the mandible tissues of humans and mice with osteoporosis while deletion of SHN3 in mice greatly increases alveolar bone and tooth dentin mass. We used a bone-targeted recombinant adeno-associated virus (rAAV) carrying an artificial microRNA (miRNA) that silences SHN3 expression to restore alveolar bone loss in mouse models of both postmenopausal and senile osteoporosis by enhancing WNT signaling and osteoblast function. In addition, rAAV-mediated silencing of SHN3 enhanced bone formation and collagen production of human skeletal organoids in xenograft mice. Finally, rAAV expression in the mandible was tightly controlled via liver- and heart-specific miRNA-mediated repression or via a vibration-inducible mechanism. Collectively, our results demonstrate that AAV-based bone anabolic gene therapy is a promising strategy to treat alveolar bone loss in osteoporosis.

10.
Proc Natl Acad Sci U S A ; 119(43): e2213540119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36260743

RESUMEN

Heterochromatin is essential for genomic integrity and stability in eukaryotes. The mechanisms that regulate meiotic heterochromatin formation remain largely undefined. Here, we show that the catalytic subunit (POL2A) of Arabidopsis DNA polymerase epsilon (POL ε) is required for proper formation of meiotic heterochromatin. The POL2A N terminus interacts with the GHKL adenosine triphosphatase (ATPase) MORC1 (Microrchidia 1), and POL2A is required for MORC1's localization on meiotic heterochromatin. Mutations affecting the POL2A N terminus cause aberrant morphology of meiotic heterochromatin, which is also observed in morc1. Moreover, the POL2A C-terminal zinc finger domain (ZF1) specifically binds to histone H3.1-H4 dimer or tetramer and is important for meiotic heterochromatin condensation. Interestingly, we also found similar H3.1-binding specificity for the mouse counterpart. Together, our results show that two distinct domains of POL2A, ZF1 and N terminus bind H3.1-H4 and recruit MORC1, respectively, to induce a continuous process of meiotic heterochromatin organization. These activities expand the functional repertoire of POL ε beyond its classic role in DNA replication and appear to be conserved in animals and plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Ratones , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Heterocromatina/genética , Histonas/metabolismo
11.
Gut ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38902029

RESUMEN

OBJECTIVE: Hepatitis B surface antigen (HBsAg) loss is the optimal outcome for patients with chronic hepatitis B (CHB) but this rarely occurs with currently approved therapies. We aimed to develop and validate a prognostic model for HBsAg loss on treatment using longitudinal data from a large, prospectively followed, nationwide cohort. DESIGN: CHB patients receiving nucleos(t)ide analogues as antiviral treatment were enrolled from 50 centres in China. Quantitative HBsAg (qHBsAg) testing was prospectively performed biannually per protocol. Longitudinal discriminant analysis algorithm was used to estimate the incidence of HBsAg loss, by integrating clinical data of each patient collected during follow-up. RESULTS: In total, 6792 CHB patients who had initiated antiviral treatment 41.3 (IQR 7.6-107.6) months before enrolment and had median qHBsAg 2.9 (IQR 2.3-3.3) log10IU/mL at entry were analysed. With a median follow-up of 65.6 (IQR 51.5-84.7) months, the 5-year cumulative incidence of HBsAg loss was 2.4%. A prediction model integrating all qHBsAg values of each patient during follow-up, designated GOLDEN model, was developed and validated. The AUCs of GOLDEN model were 0.981 (95% CI 0.974 to 0.987) and 0.979 (95% CI 0.974 to 0.983) in the training and external validation sets, respectively, and were significantly better than those of a single qHBsAg measurement. GOLDEN model identified 8.5%-10.4% of patients with a high probability of HBsAg loss (5-year cumulative incidence: 17.0%-29.1%) and was able to exclude 89.6%-91.5% of patients whose incidence of HBsAg loss is 0. Moreover, the GOLDEN model consistently showed excellent performance among various subgroups. CONCLUSION: The novel GOLDEN model, based on longitudinal qHBsAg data, accurately predicts HBsAg clearance, provides reliable estimates of functional hepatitis B virus (HBV) cure and may have the potential to stratify different subsets of patients for novel anti-HBV therapies.

12.
Curr Issues Mol Biol ; 46(7): 6328-6345, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39057020

RESUMEN

Although sows do not directly enter the market, they play an important role in piglet breeding on farms. They consume large amounts of feed, resulting in a significant environmental burden. Pig farms can increase their income and reduce environmental pollution by increasing the litter size (LS) of swine. PCR-RFLP/SSCP and GWAS are common methods to evaluate single-nucleotide polymorphisms (SNPs) in candidate genes. We conducted a systematic meta-analysis of the effect of SNPs on pig LS. We collected and analysed data published over the past 30 years using traditional and network meta-analyses. Trial sequential analysis (TSA) was used to analyse population data. Gene set enrichment analysis and protein-protein interaction network analysis were used to analyse the GWAS dataset. The results showed that the candidate genes were positively correlated with LS, and defects in PCR-RFLP/SSCP affected the reliability of candidate gene results. However, the genotypes with high and low LSs did not have a significant advantage. Current breeding and management practices for sows should consider increasing the LS while reducing lactation length and minimizing the sows' non-pregnancy period as much as possible.

13.
Curr Issues Mol Biol ; 46(5): 3866-3876, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38785508

RESUMEN

Cold stress significantly affects gene expression in adipocytes; studying this phenomenon can help reveal the pathogeneses of conditions such as obesity and insulin resistance. Adipocyte triglyceride lipase (ATGL); cell death-inducing deoxyribonucleic acid (DNA) fragmentation factor subunit alpha (DFFA)-like effector (CIDEA); and uncoupling protein genes UCP1, UCP2, and UCP3 are the most studied genes in pig adipose tissues under cold stress. However, contradictory results have been observed in gene expression changes to UCP3 and UCP2 when adipose tissues under cold stress were examined. Therefore, we conducted a meta-analysis of 32 publications in total on the effect of cold stress on the expression of ATGL, CIDEA, UCP2, and UCP3. Our results showed that cold stress affected the expression of swine adipocyte genes; specifically, it was positively correlated with the expression of UCP3 in swine adipocytes. Conversely, expression of ATGL was negatively affected under cold stress conditions. In addition, the loss of functional UCP1 in pigs likely triggered a compensatory increase in UCP3 activity. We also simulated the docking results of UCP2 and UCP3. Our results showed that UCP2 could strongly bind to adenosine triphosphate (ATP), meaning that UCP3 played a more significant role in pig adipocytes.

14.
Oncologist ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990195

RESUMEN

BACKGROUND: Encouraging antitumor activity of nab-paclitaxel plus S-1 (AS) has been shown in several small-scale studies. This study compared the efficacy and safety of AS versus standard-of-care nab-paclitaxel plus gemcitabine (AG) as a first-line treatment for advanced pancreatic cancer (PC). METHODS: In this multicenter, randomized, phase II trial, eligible patients with unresectable, locally advanced, or metastatic PC were recruited and randomly assigned (1:1) to receive AS (nab-paclitaxel 125 mg/m2 on days 1 and 8; S-1 twice daily on days 1 through 14) or AG (nab-paclitaxel 125 mg/m2 on days 1 and 8; gemcitabine 1000 mg/m2 on days 1 and 8) for 6 cycles. The primary endpoint was progression-free survival (PFS). RESULTS: Between July 16, 2019, and September 9, 2022, 62 patients (AS, n = 32; AG, n = 30) were treated and evaluated. With a median follow-up of 8.36 months at preplanned interim analysis (data cutoff, March 24, 2023), the median PFS (8.48 vs 4.47 months; hazard ratio [HR], 0.402; P = .002) and overall survival (OS; 13.73 vs 9.59 months; HR, 0.226; P < .001) in the AS group were significantly longer compared to the AG group. More patients had objective response in the AS group than AG group (37.50% vs 6.67%; P = .005). The most common grade 3-4 adverse events were neutropenia and leucopenia in both groups, and gamma glutamyl transferase increase was observed only in the AG group. CONCLUSION: The first-line AS regimen significantly extended both PFS and OS of Chinese patients with advanced PC when compared with the AG regimen, with a comparable safety profile. (ClinicalTrials.gov Identifier: NCT03636308).

15.
Anal Chem ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324019

RESUMEN

Cascade molecular events in complex systems are of vital importance for enhancing molecular diagnosis and information processing. However, the conversion of a cascaded biosensing system into a multilayer encrypted molecular keypad lock remains a significant challenge in the development of molecular logic devices. In this study, we present a photocleavable DNA nanotube-based dual-amplified resonance Rayleigh scattering (RRS) system for detecting microRNA-126 (miR-126). The cascading dual-amplification biosensing system provides a multilayer-encrypted prototype with the functionality of a molecular computing cascade keypad lock. RRS signals were greatly amplified by using photocleavable DNA nanotubes and enzyme-assisted strand displacement amplification (SDA). In the presence of miR-126, enzyme-assisted SDA produced numerous identical nucleotide fragments as the target, which were then specifically attached to magnetic beads through the DNA nanotube by using a Y-shaped DNA scaffold. Upon ultraviolet irradiation, the DNA nanotube was released into the solution, resulting in an increase in the intensity of the RRS signal. This strategy demonstrated a low limit of detection (0.16 fM) and a wide dynamic range (1 fM to 1 nM) for miR-126. Impressively, the enzyme-assisted SDA offers a molecular computing model for generating the target pool, which serves as the input element for unlocking the system. By cascading the molecular computing process, we successfully constructed a molecular keypad lock with a multilevel authentication technique. The proposed system holds great potential for applications in molecular diagnosis and information security, indicating significant value in integrating molecular circuits for intelligent sensing.

16.
Biochem Biophys Res Commun ; 704: 149702, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38422898

RESUMEN

BACKGROUND: As a chronic inflammatory disease, diabetes mellitus (DM) contributes to the development of atherosclerosis (AS). However, how the NLRP3 inflammasome participates in diabetes-related AS remains unclear. Therefore, this study aimed to elucidate the mechanism through which NLRP3 uses high glucose (HG) levels to promote AS. METHODS: Serum and coronary artery tissues were collected from coronary artery disease (CAD) patients with and without DM, respectively. The expression of NLRP3 was detected, and the effects of this inflammasome on diabetes-associated AS were evaluated using streptozotocin (STZ)-induced diabetic apoE-/- mice injected with Adenovirus-mediated NLRP3 interference (Ad-NLRP3i). To elucidate the potential mechanism involved, ox-LDL-irritated human aortic smooth muscle cells were divided into the control, high-glucose, Si-NC, and Si-NLRP3 groups to observe the changes induced by downregulating NLRP3 expression. For up-regulating NLRP3, control and plasmid contained NLRP3 were used. TNF-α, IL-1ß, IL-6, IL-18, phosphorylated and total p38, JNK, p65, and IκBα expression levels were detected following the downregulation or upregulation of NLRP3 expression. RESULTS: Patients with comorbid CAD and DM showed higher serum levels and expression of NLRP3 in the coronary artery than those with only CAD. Moreover, mice in the Ad-NLRP3i group showed markedly smaller and more stable atherosclerotic lesions compared to those in other DM groups. These mice had decreased inflammatory cytokine production and improved glucose tolerance, which demonstrated the substantial effects of NLRP3 in the progression of diabetes-associated AS. Furthermore, using the siRNA or plasmid to downregulate or upregulate NLRP3 expression in vitro altered cytokines and the MAPK/NF-κB pathway. CONCLUSIONS: NLRP3 expression was significantly increased under hyperglycemia. Additionally, it accelerated AS by promoting inflammation via the IL/MAPK/NF-κB pathway.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Experimental , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Ratones Noqueados para ApoE , Inflamación/metabolismo , Aterosclerosis/complicaciones , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Glucosa
17.
BMC Plant Biol ; 24(1): 273, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605371

RESUMEN

BACKGROUND: Environmental stresses negatively impact reproductive development and yield. Drought stress, in particular, has been examined during Arabidopsis reproductive development at morphological and transcriptomic levels. However, drought-responsive transcriptomic changes at different points in reproductive development remain unclear. Additionally, an investigation of the entire transcriptome at various stages during flower development is of great interest. RESULTS: Here, we treat Arabidopsis plants with well-watered and moderately and severely limiting water amounts when the first flowers reach maturity and generate RNA-seq datasets for early, middle, and late phases during flower development at 5, 6, and 7 days following treatment. Under different drought conditions, flowers in different developmental phases display differential sets of drought-responsive genes (DTGs), including those that are enriched in different GO functional categories, such as transcriptional regulation and response to stresses (early phase), lipid storage (middle phase), and pollen and seed development and metabolic processes (late phase). Some gene families have different members induced at different floral phases, suggesting that similar biochemical functions are carried out by distinct members. Developmentally-regulated genes (DVGs) with differential expression among the three floral phases belong to GO terms that are similar between water conditions, such as development and reproduction, metabolism and transport, and signaling and stress response. However, for different water conditions, such similar GO terms correspond to either distinct gene families or different members of a gene family, suggesting that drought affects the expression of distinct families or family members during reproductive development. A further comparison among transcriptomes of tissues collected on different days after treatment identifies differential gene expression, suggesting age-related genes (ARGs) might reflect the changes in the overall plant physiology in addition to drought response and development. CONCLUSION: Together, our study provides new insights into global transcriptome reprogramming and candidate genes for drought response, flower development, aging and coordination among these complex biological processes.


Asunto(s)
Arabidopsis , Transcriptoma , Arabidopsis/genética , Agua , Reproducción/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Sequías , Estrés Fisiológico/genética
18.
J Transl Med ; 22(1): 567, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872212

RESUMEN

Both cancer and fibrosis are diseases involving dysregulation of cell signaling pathways resulting in an altered cellular microenvironment which ultimately leads to progression of the condition. The two disease entities share common molecular pathophysiology and recent research has illuminated the how each promotes the other. Multiple imaging techniques have been developed to aid in the early and accurate diagnosis of each disease, and given the commonalities between the pathophysiology of the conditions, advances in imaging one disease have opened new avenues to study the other. Here, we detail the most up-to-date advances in imaging techniques for each disease and how they have crossed over to improve detection and monitoring of the other. We explore techniques in positron emission tomography (PET), magnetic resonance imaging (MRI), second generation harmonic Imaging (SGHI), ultrasound (US), radiomics, and artificial intelligence (AI). A new diagnostic imaging tool in PET/computed tomography (CT) is the use of radiolabeled fibroblast activation protein inhibitor (FAPI). SGHI uses high-frequency sound waves to penetrate deeper into the tissue, providing a more detailed view of the tumor microenvironment. Artificial intelligence with the aid of advanced deep learning (DL) algorithms has been highly effective in training computer systems to diagnose and classify neoplastic lesions in multiple organs. Ultimately, advancing imaging techniques in cancer and fibrosis can lead to significantly more timely and accurate diagnoses of both diseases resulting in better patient outcomes.


Asunto(s)
Diagnóstico por Imagen , Fibrosis , Neoplasias , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Diagnóstico por Imagen/métodos , Animales
19.
J Transl Med ; 22(1): 609, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956586

RESUMEN

Sustained injury from factors such as hypoxia, infection, or physical damage may provoke improper tissue repair and the anomalous deposition of connective tissue that causes fibrosis. This phenomenon may take place in any organ, ultimately leading to their dysfunction and eventual failure. Tissue fibrosis has also been found to be central in both the process of carcinogenesis and cancer progression. Thus, its prompt diagnosis and regular monitoring is necessary for implementing effective disease-modifying interventions aiming to reduce mortality and improve overall quality of life. While significant research has been conducted on these subjects, a comprehensive understanding of how their relationship manifests through modern imaging techniques remains to be established. This work intends to provide a comprehensive overview of imaging technologies relevant to the detection of fibrosis affecting thoracic organs as well as to explore potential future advancements in this field.


Asunto(s)
Fibrosis , Humanos , Tórax/diagnóstico por imagen , Tórax/patología
20.
J Transl Med ; 22(1): 610, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956593

RESUMEN

Fibrosis is the aberrant process of connective tissue deposition from abnormal tissue repair in response to sustained tissue injury caused by hypoxia, infection, or physical damage. It can affect almost all organs in the body causing dysfunction and ultimate organ failure. Tissue fibrosis also plays a vital role in carcinogenesis and cancer progression. The early and accurate diagnosis of organ fibrosis along with adequate surveillance are helpful to implement early disease-modifying interventions, important to reduce mortality and improve quality of life. While extensive research has already been carried out on the topic, a thorough understanding of how this relationship reveals itself using modern imaging techniques has yet to be established. This work outlines the ways in which fibrosis shows up in abdominal organs and has listed the most relevant imaging technologies employed for its detection. New imaging technologies and developments are discussed along with their promising applications in the early detection of organ fibrosis.


Asunto(s)
Abdomen , Fibrosis , Humanos , Abdomen/diagnóstico por imagen , Abdomen/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda