RESUMEN
Mutations modification enzymes including the tRNA N7-methylguanosine (m7G) methyltransferase complex component WDR4 were frequently found in patients with neural disorders, while the pathogenic mechanism and therapeutic intervention strategies are poorly explored. In this study, we revealed that patient-derived WDR4 mutation leads to temporal and cell-type-specific neural degeneration, and directly causes neural developmental disorders in mice. Mechanistically, WDR4 point mutation disrupts the interaction between WDR4 and METTL1 and accelerates METTL1 protein degradation. We further uncovered that impaired tRNA m7G modification caused by Wdr4 mutation decreases the mRNA translation of genes involved in mTOR pathway, leading to elevated endoplasmic reticulum stress markers, and increases neural cell apoptosis. Importantly, treatment with stress-attenuating drug Tauroursodeoxycholate (TUDCA) significantly decreases neural cell death and improves neural functions of the Wdr4 mutated mice. Moreover, adeno-associated virus mediated transduction of wild-type WDR4 restores METTL1 protein level and tRNA m7G modification in the mouse brain, and achieves long-lasting therapeutic effect in Wdr4 mutated mice. Most importantly, we further demonstrated that both TUDCA treatment and WDR4 restoration significantly improve the survival and functions of human iPSCs-derived neuron stem cells that harbor the patient's WDR4 mutation. Overall, our study uncovers molecular insights underlying WDR4 mutation in the pathogenesis of neural diseases and develops two promising therapeutic strategies for treatment of neural diseases caused by impaired tRNA modifications.
Asunto(s)
Guanosina , Metiltransferasas , ARN de Transferencia , Animales , Humanos , Ratones , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Guanosina/análogos & derivados , Guanosina/metabolismo , Apoptosis/efectos de los fármacos , Neuronas/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Mutación , Ácido Tauroquenodesoxicólico , Proteínas de Unión al GTPRESUMEN
OBJECTIVES: To investigate the inhibitory effects of STM2457, which is a novel METTL3 (m6A writer) inhibitor, both as a monotherapy and in combination with anlotinib, in the treatment of oral squamous cell carcinoma (OSCC) both in vitro and in vivo. MATERIALS AND METHODS: The efficacy of STM2457 or STM2457 plus anlotinib was evaluated using two OSCC cell lines by CCK8, transwell, colony formation, would-healing, sphere formation, cell cycle, apoptosis assays, and nude mice tumor xenograft techniques. The molecular mechanism study was carried out by western blotting, qRT-PCR, MeRIP-qPCR, immunofluorescence, and immunohistochemistry. RESULTS: STM2457 combined with anlotinib enhanced inhibition of cellular survival/proliferation and promotion of apoptosis in vitro. Moreover, this combinatorial approach exerted a notable reduction in stemness properties and EMT (epithelial-mesenchymal transition) features of OSCC cells. Remarkably, in vivo studies validated the efficacy of the combination treatment. Mechanistically, our investigations revealed that the combined action of STM2457 and anlotinib exerted downregulatory effects on EGFR (epidermal growth factor receptor) expression in OSCC cells. CONCLUSIONS: The combination of STM2457 and anlotinib targeting EGFR exerted a multiple anti-tumor effect. In near future, anlotinib combined with STM2457 may provide a novel insight for the treatment of OSCC.
Asunto(s)
Apoptosis , Proliferación Celular , Indoles , Ratones Desnudos , Neoplasias de la Boca , Quinolinas , Humanos , Indoles/uso terapéutico , Indoles/farmacología , Quinolinas/uso terapéutico , Quinolinas/farmacología , Animales , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Línea Celular Tumoral , Ratones , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , MetiltransferasasRESUMEN
Mis-regulated epigenetic modifications in RNAs are associated with human cancers. The transfer RNAs (tRNAs) are the most heavily modified RNA species in cells; however, little is known about the functions of tRNA modifications in cancers. In this study, we uncovered that the expression levels of tRNA N7-methylguanosine (m7G) methyltransferase complex components methyltransferase-like 1 (METTL1) and WD repeat domain 4 (WDR4) are significantly elevated in human lung cancer samples and negatively associated with patient prognosis. Impaired m7G tRNA modification upon METTL1/WDR4 depletion resulted in decreased cell proliferation, colony formation, cell invasion, and impaired tumorigenic capacities of lung cancer cells in vitro and in vivo. Moreover, gain-of-function and mutagenesis experiments revealed that METTL1 promoted lung cancer growth and invasion through regulation of m7G tRNA modifications. Profiling of tRNA methylation and mRNA translation revealed that highly translated mRNAs have higher frequencies of m7G tRNA-decoded codons, and knockdown of METTL1 resulted in decreased translation of mRNAs with higher frequencies of m7G tRNA codons, suggesting that tRNA modifications and codon usage play an essential function in mRNA translation regulation. Our data uncovered novel insights on mRNA translation regulation through tRNA modifications and the corresponding mRNA codon compositions in lung cancer, providing a new molecular basis underlying lung cancer progression.
Asunto(s)
Neoplasias Pulmonares , Biosíntesis de Proteínas , Uso de Codones , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Neoplasias Pulmonares/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN de Transferencia/genéticaRESUMEN
Arbuscular mycorrhizal (AM) fungi enhance plant salt tolerance. However, physiological mechanisms of enhanced salt tolerance in leaves and roots of trees rarely have been compared. To reveal the different mechanisms, our study utilized comprehensive analyses of leaves and roots to examine the effects of Funneliformis mosseae on the salinity tolerance of Zelkova serrata. Seedlings of Z. serrata were exposed to four salt levels in a greenhouse with and without F. mosseae inoculation. Treatment comparisons revealed that following F. mosseae inoculation, (1) nutrient deficiency caused by osmotic stress was mitigated by the fungus enhancing nutrient contents (K, Ca, and Mg) in roots and (N, P, K, Ca, and Mg) in leaves, with Ca and K contents being higher in both leaves and roots; (2) mycorrhizas alleviated ion toxicity by maintaining a favorable ion balance (e.g., K+/Na+), and this regulatory effect was higher in leaves than that in roots; and (3) oxidative damage was reduced by an increase in the activities of antioxidant enzymes and accumulation of antioxidant compounds in mycorrhizal plants although the increase differed in leaves and roots. In particular, AM fungus-enhanced catalase activity and reduced glutathione content only occurred in leaves, whereas an enhanced content of reduced ascorbic acid was only noted in roots. Growth, root vitality, leaf photosynthetic pigments, net photosynthetic rate, and dry weight were higher in seedlings with AM fungus inoculation. These results suggest that AM fungus inoculation improved salinity tolerance of Z. serrata, but the physiological mechanisms differed between leaves and roots.
Asunto(s)
Glomeromycota , Micorrizas , Hojas de la Planta , Raíces de Plantas , UlmaceaeRESUMEN
BACKGROUND: Hepatocellular carcinoma is a malignant tumor with a highly invasive and metastatic phenotype, and the detection of potential indicators associated with its recurrence and metastasis after surgical resection is critical for patient survival. METHODS: Transcriptome data for large cohorts (n = 1432) from multicenter sources were comprehensively analyzed to explore such potential signatures. The prognostic value of the selected indicators was investigated and discussed, and a comparison with conventional clinicopathological features was performed. A survival predictive nomogram for 5-year survival was established with the selected indicator using the Cox proportional hazards regression. To validate the indicator at the protein level, we performed immunohistochemical staining with paraffin-embedded slides of hepatocellular carcinoma samples (n = 67 patients) from our hospital. Finally, a gene set enrichment analysis (GSEA) was performed to detect the underlying biological processes and internal mechanisms. RESULTS: The liver-specific protein paraoxonase 1 (PON1) was found to be the most relevant indicator of tumor recurrence, invasiveness, and metastasis in the present study, and the downregulation of PON1 might reveal poor survival for patients with hepatocellular carcinoma. The C-index of the PON1-related nomogram was 0.714, thus indicating a more effective predictive performance than the 7th American Joint Committee on Cancer (AJCC) tumor stage (0.534), AJCC T stage (0.565), or alpha-fetoprotein (0.488). The GSEA revealed that PON1 was associated with several hepatocellular carcinoma-related pathways, including the cell cycle, DNA replication, gap junction and p53 downstream pathways. CONCLUSIONS: The downregulation of paraoxonase 1 may suggest worse outcomes and a higher recurrence rate. Thus, paraoxonase 1 might represent an indicator for predicting the survival of patients with hepatocellular carcinoma.
Asunto(s)
Arildialquilfosfatasa/metabolismo , Carcinoma Hepatocelular/enzimología , Neoplasias Hepáticas/enzimología , Modelos Biológicos , Recurrencia Local de Neoplasia/patología , Femenino , Humanos , Metástasis de la Neoplasia , Especificidad de Órganos , Pronóstico , Análisis de SupervivenciaRESUMEN
BACKGROUND/AIMS: ALT1 is a novel long non-coding RNA derived from the alternatively spliced transcript of the deleted in lymphocytic leukemia 2 (DLEU2). To date, ALT1 biological roles in human vascular endothelial cells have not been reported. METHODS: ALT1 was knocked down by siRNAs. Cell proliferation was analyzed by cck-8. The existence and sequence of human ALT1 were identified by 3' rapid amplification of cDNA ends. The interaction between lncRNA and proteins was analyzed by RNA-Protein pull down assay, RNA immunoprecipitation, and mass spectrometry analysis. RESULTS: ALT1 was expressed in human umbilical vein endothelial cells (HUVECs). The expression of ALT1 was significantly downregulated in contact-inhibited HUVECs and in hypoxia-induced, growth-arrested HUVECs. Knocking down of ALT1 inhibited the proliferation of HUVECs by G0/G1 cell cycle arrest. We observed that angiotensin converting enzyme â ¡(ACE2) was a direct target gene of ALT1. Knocking-down of ALT1 or its target gene ACE2 could efficiently decrease the expression of cyclin D1 via the enhanced ubiquitination and degradation, in which HIF-1α and protein von Hippel-Lindau (pVHL) might be involved. CONCLUSION: The results suggested the human long non-coding RNA ALT1 is a novel regulator for cell cycle of HUVECs via ACE2 and cyclin D1 pathway.
Asunto(s)
Peptidil-Dipeptidasa A/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Enzima Convertidora de Angiotensina 2 , Apoptosis , Proteínas Portadoras/metabolismo , Hipoxia de la Célula , Proliferación Celular , Proteínas Cullin/antagonistas & inhibidores , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Proteínas del Citoesqueleto , Regulación hacia Abajo , Puntos de Control de la Fase G1 del Ciclo Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inmunoprecipitación , MicroARNs/metabolismo , Chaperonas Moleculares , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Interferencia de ARN , ARN Largo no Codificante , ARN Interferente Pequeño/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Transferasas , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética , UbiquitinaciónRESUMEN
BACKGROUND: Triple-negative breast cancer (TNBC) is the malignancy with the worst outcome among all breast cancer subtypes. We reported that ETV1 is a significant oncogene in TNBC tumourigenesis. Consequently, investigating the critical regulatory microRNAs (miRNAs) of ETV1 may be beneficial for TNBC targeted therapy. METHODS: We performed in situ hybridization (ISH) and immunohistochemistry (IHC) to detect the location of miR-17-5p and ETV1 in TNBC patient samples, respectively. miR-17-5p expression in TNBC tissues and cell lines was assessed by quantitative real-time PCR (qRT-PCR). ETV1 expression was evaluated by qRT-PCR, western blotting and IHC. Cell Counting Kit-8 (CCK-8), colony formation, Transwell and wound closure assays were utilized to determine the TNBC cell proliferation and migration capabilities. In vivo tumour metastatic assays were performed in a zebra fish model. RESULTS: The abundance of miR-17-5p was significantly decreased in TNBC cell lines and clinical TNBC tissues. The miR-17-5p expression levels were closely correlated with tumour size (P < 0.05) and TNM stage (P < 0.05). By contrast, the expression of ETV1 was significantly up-regulated in TNBC cell lines and tissues. There is an inverse correlation between the expression status of miR-17-5p and ETV1 (r = -0.28, P = 3.88 × 10-3). Luciferase reporter assay confirmed that ETV1 was a direct target of miR-17-5p. Forced expression of miR-17-5p in MDA-MB-231 or BT549 cells significantly decreased ETV1 expression and suppressed cell proliferation, migration in vitro and tumour metastasis in vivo. However, rescuing the expression of ETV1 in the presence of miR-17-5p significantly recovered the cell phenotype. High miR-17-5p expression was associated with a significantly favourable prognosis, in either the ETV1-positive or ETV1-negative groups (log-rank test, P < 0.001; P < 0.001). Both univariate and multivariate analyses showed that miR-17-5p and ETV1 were independent risk factors in the prognosis of TNBC patient. CONCLUSIONS: Our data indicate that miR-17-5p acts as a tumour suppressor in TNBC by targeting ETV1, and a low-abundance of miR-17-5p may be involved in the pathogenesis of TNBC. These findings indicate that miR-17-5p may be a therapeutic target for TNBC.
Asunto(s)
Proteínas de Unión al ADN/genética , MicroARNs/genética , Pronóstico , Factores de Transcripción/genética , Neoplasias de la Mama Triple Negativas/genética , Adulto , Anciano , Animales , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Invasividad Neoplásica/genética , Neoplasias de la Mama Triple Negativas/patología , Pez CebraRESUMEN
N16 is a protein from the nacreous layer of Pinctada fucata, a pearl oyster. It has been found to promote biomineralization, and we hypothesized that it also plays a role in bone metabolism. The cDNA of N16 was cloned and expressed in Escherichia coli to produce N16 protein, which was purified to high homogeneity by ion-exchange and gel filtration columns. The effects of N16 on osteoclast differentiation and osteogenesis were clarified using the murine preosteoclast cell line RAW 264.7 and the preosteoblast cell line MC3T3-E1. Results on preosteoclasts showed that N16 only slightly inhibited cell survival but significantly inhibited differentiation induced by receptor activator of nuclear factor kappa-B ligand (RANKL). Apart from reduced formation of multinucleated osteoclasts, N16-treated cells exhibited lower gene expression and enzymatic activity typical of mature osteoclasts. Actin ring formation and intracellular acidification essential for osteoclastic function were also impaired upon N16 treatment. At concentrations nontoxic to preosteoblasts, N16 strongly up-regulated alkaline phosphatase activity and increased mineralized nodule formation, which are indicative of differentiation into osteoblasts. These effects coincided with an increase in mRNA expression of osteoblast markers osteopotin and osteocalcin. The present study demonstrated that N16 has both anabolic and antiresorptive effects on bone, which makes it potentially useful for treating osteoporosis.
Asunto(s)
Nácar/química , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Proteínas/aislamiento & purificación , Proteínas/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Proteínas de la Matriz Extracelular , Ratones , Estructura Molecular , Osteoblastos/efectos de los fármacos , Proteínas/química , Ligando RANK/farmacologíaRESUMEN
AIMS: To explore the expression of miR-24-3p in human arteries with arteriosclerosis obliterans (ASO) as well as the role of miR-24-3p in the pathogenesis of ASO. METHODS: We used quantitative real-time PCR (qRT-PCR) and in situ hybridization to monitor miR-24-3p expression in human arteries. To investigate the effect of miR-24-3p on human arterial smooth muscle cells (HASMCs), we applied cell counting and EdU assays to monitor proliferation and transwell and wound healing assays to investigate migration and flow cytometry to investigate apoptosis. Furthermore, we applied 3'-untranslated region (3'-UTR) luciferase assays to investigate the role of miR-24-3p in targeting platelet-derived growth factor receptor B (PDGFRB) and c-Myc. RESULTS: MiR-24-3p was mainly located in the media of arteries and was downregulated in ASO arteries compared with normal arteries. Platelet-derived growth factor BB (PDGF-BB) treatment reduced the expression of miR-24-3p in primary cultured HASMCs. MiR-24-3p mimic oligos inhibited the proliferation and migration, and promotes apoptosis of HASMCs. Our 3'-UTR luciferase assays confirmed that PDGFRB and c-Myc were targets of miR-24-3p. CONCLUSION: The results suggest that miR-24-3p regulates the proliferation and migration of HASMCs by targeting PDGFRB and c-Myc. The PDGF/miR-24-3p/PDGFRB and PDGF/miR-24-3p/c-Myc pathways may play critical roles in the pathogenesis of ASO. These findings highlight the potential for new therapeutic targets for ASO.
Asunto(s)
Apoptosis , Arteriosclerosis Obliterante/genética , Movimiento Celular , Proliferación Celular , Regulación de la Expresión Génica , MicroARNs/genética , Miocitos del Músculo Liso/patología , Arteriosclerosis Obliterante/patología , Secuencia de Bases , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miocitos del Músculo Liso/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genéticaRESUMEN
BACKGROUND: ETS variant 1 (ETV1) and E3 ubiquitin ligase constitutive photomorphogenetic 1 (COP1) have been proposed to be a pair of oncogene and tumor suppressor. However, the co-existing status of ETV1 and COP1 in triple-negative breast cancer (TNBC) and their predictive role in determining the patient's outcome are uncertain. METHODS: We examined the abundance of COP1 and ETV1 proteins and their clinicopathologic significance in archival TNBC tissues from 105 patients by tissue microarray. The potential function link between COP1 and ETV1 was observed in MDA-MB-231 cells by cell proliferation, invasion and migration assays. RESULTS: ETV1 expression was higher in TNBC tissues compared to normal tissues, while COP1 was lower. ETV1 expression was negatively associated with COP1 abundance in TNBCs. Overexpression of COP1 led to significant reduction of ETV1 in MDA-MB-231 cells, and suppressed the cells migration and invasion. Rescue of ETV1 expression in the presence of COP1 notably regained the cells behaviors. ETV1-positive group was associated with a markedly poor overall survival. Meanwhile, we had observed favourable prognosis in COP1-positive cases for the first time. Multivariate analysis showed that COP1 together with ETV1 were independent risk factors in the prognosis of TNBC patients. CONCLUSIONS: COP1 might be a tumor suppressor by negative regulating ETV1 in patients with TNBCs. COP1 and ETV1 are a pair of independent predictors of prognosis for TNBC cases. Thus, targeting them might be a potential strategy for personalized TNBC treatment.
Asunto(s)
Biomarcadores de Tumor/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Factores de Transcripción/biosíntesis , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/metabolismo , Ubiquitina-Proteína Ligasas/biosíntesis , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia/tendencias , Neoplasias de la Mama Triple Negativas/mortalidadRESUMEN
Head and neck squamous cell carcinoma (HNSCC) is characterized by high recurrence or distant metastases rate and the prognosis is challenging. There is mounting evidence that tumor-infiltrating B cells (TIL-Bs) have a crucial, synergistic role in tumor control. However, little is known about the role TIL-Bs play in immune microenvironment and the way TIL-Bs affect the outcome of immune checkpoint blockade. Using single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, the study identified distinct gene expression patterns in TIL-Bs. HNSCC samples were categorized into TIL-Bs inhibition and TIL-Bs activation groups using unsupervised clustering. This classification was further validated with TCGA HNSCC data, correlating with patient prognosis, immune cell infiltration, and response to immunotherapy. We found that the B cells activation group exhibited a better prognosis, higher immune cell infiltration, and distinct immune checkpoint levels, including elevated PD-L1. A prognostic model was also developed and validated, highlighting four genes as potential biomarkers for predicting survival outcomes in HNSCC patients. Overall, this study provides a foundational approach for B cells-based tumor classification in HNSCC, offering insights into targeted treatment and immunotherapy strategies.
Asunto(s)
Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Pronóstico , Biomarcadores , Neoplasias de Cabeza y Cuello/terapia , Análisis de la Célula Individual , Microambiente TumoralRESUMEN
Translation of mRNA to protein is tightly regulated by transfer RNAs (tRNAs), which are subject to various chemical modifications that maintain structure, stability, and function. Deficiency of tRNA N7-methylguanosine (m7G) modification in patients causes a type of primordial dwarfism, but the underlying mechanism remains unknown. Here we report that the loss of m7G rewires cellular metabolism, leading to the pathogenesis of primordial dwarfism. Conditional deletion of the catalytic enzyme Mettl1 or missense mutation of the scaffold protein Wdr4 severely impaired endochondral bone formation and bone mass accrual. Mechanistically, Mettl1 knockout decreased abundance of m7G-modified tRNAs and inhibited translation of mRNAs relating to cytoskeleton and Rho GTPase signaling. Meanwhile, Mettl1 knockout enhanced cellular energy metabolism despite incompetent proliferation and osteogenic commitment. Further exploration revealed that impairment of Rho GTPase signaling upregulated the level of branched-chain amino acid transaminase 1 (BCAT1) that rewired cell metabolism and restricted intracellular α-ketoglutarate (αKG). Supplementation of αKG ameliorated the skeletal defect of Mettl1-deficient mice. In addition to the selective translation of metabolism-related mRNAs, we further revealed that Mettl1 knockout globally regulated translation via integrated stress response (ISR) and mammalian target of rapamycin complex 1 (mTORC1) signaling. Restoring translation by targeting either ISR or mTORC1 aggravated bone defects of Mettl1-deficient mice. Overall, our study unveils a critical role of m7G tRNA modification in bone development by regulation of cellular metabolism and indicates suspension of translation initiation as a quality control mechanism in response to tRNA dysregulation.
Asunto(s)
Desarrollo Óseo , Enanismo , Ratones Noqueados , Animales , Ratones , Enanismo/genética , Enanismo/metabolismo , Enanismo/patología , Desarrollo Óseo/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Humanos , Osteogénesis , Metiltransferasas/genética , Metiltransferasas/metabolismo , Guanosina/análogos & derivados , Guanosina/metabolismo , Guanosina/genética , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genéticaRESUMEN
Emerging studies have demonstrated the link between RNA modifications and various cancers, while the predictive value and functional mechanisms of RNA modification-related genes (RMGs) in esophageal squamous cell carcinoma (ESCC) remain unclear. Here we established a prognostic signature for ESCC based on five RMGs. The analysis of ESCC clinical samples further verified the prognostic power of the prognostic signature. Moreover, we found that the knockdown of NSUN6 promotes ESCC progression in vitro and in vivo, whereas the overexpression of NSUN6 inhibits the malignant phenotype of ESCC cells. Mechanically, NSUN6 mediated tRNA m5C modifications selectively enhance the translation efficiency of CDH1 mRNA in a codon dependent manner. Rescue assays revealed that E-cadherin is an essential downstream target that mediates NSUN6's function in the regulation of ESCC progression. These findings offer additional insights into the link between ESCC and RMGs, as well as provide potential strategies for ESCC management and therapy.
RESUMEN
Interplay between innate and adaptive immune cells is important for the antitumor immune response. However, the tumor microenvironment may turn immune suppressive, and tumor associated macrophages are playing a role in this transition. Here, we show that CD276, expressed on tumor-associated macrophages (TAM), play a role in diminishing the immune response against tumors. Using a model of tumors induced by N-butyl-N-(4-hydroxybutyl) nitrosamine in BLCA male mice we show that genetic ablation of CD276 in TAMs blocks efferocytosis and enhances the expression of the major histocompatibility complex class II (MHCII) of TAMs. This in turn increases CD4 + and cytotoxic CD8 + T cell infiltration of the tumor. Combined single cell RNA sequencing and functional experiments reveal that CD276 activates the lysosomal signaling pathway and the transcription factor JUN to regulate the expression of AXL and MerTK, resulting in enhanced efferocytosis in TAMs. Proving the principle, we show that simultaneous blockade of CD276 and PD-1 restrain tumor growth better than any of the components as a single intervention. Taken together, our study supports a role for CD276 in efferocytosis by TAMs, which is potentially targetable for combination immune therapy.
Asunto(s)
Macrófagos Asociados a Tumores , Neoplasias de la Vejiga Urinaria , Animales , Masculino , Ratones , Eferocitosis , Evasión Inmune , Macrófagos/metabolismo , Factores de Transcripción/metabolismo , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria/metabolismoRESUMEN
Osteosarcoma is the most common bone tumor that leads to high mortality in adolescents and children. The tRNA N7-methylguanosine methyltransferase METTL1 is located in chromosome 12q14.1, a region that is frequently amplified in osteosarcoma patients, while its functions and underlying mechanisms in regulation of osteosarcoma remain unknown. Herein we show that METTL1 and WDR4 are overexpressed in osteosarcoma and associated with poor patient prognosis. Knockdown of METTL1 or WDR4 causes decreased tRNA m7G modification level and impairs osteosarcoma progression in vitro and in vivo. Conversely, METTL1/WDR4 overexpression promotes osteosarcoma proliferation, migration and invasion capacities. tRNA methylation and mRNA translation profiling indicate that METTL1/WDR4 modified tRNAs enhance translation of mRNAs with more m7G tRNA-decoded codons, including extracellular matrix (ECM) remodeling effectors, which facilitates osteosarcoma progression and chemoresistance to doxorubicin. Our study demonstrates METTL1/WDR4 mediated tRNA m7G modification plays crucial oncogenic functions to enhance osteosarcoma progression and chemoresistance to doxorubicin via alteration of oncogenic mRNA translation, suggesting METTL1 inhibition combined with chemotherapy is a promising strategy for treatment of osteosarcoma patients.
Asunto(s)
Neoplasias Óseas , Osteosarcoma , Niño , Humanos , Adolescente , Metiltransferasas/genética , Metiltransferasas/metabolismo , Transformación Celular Neoplásica , Carcinogénesis/genética , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Doxorrubicina/farmacología , Biosíntesis de Proteínas , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Unión al GTP/metabolismoRESUMEN
Aberrant RNA modifications are frequently associated with cancers, while the underlying mechanisms and clinical significance remain poorly understood. Here, we find that the ac4C RNA acetyltransferase NAT10 is significantly upregulated in esophageal cancers (ESCAs) and associated with poor ESCA prognosis. In addition, using ESCA cell lines and mouse models, we confirm the critical functions of NAT10 in promoting ESCA tumorigenesis and progression in vitro and in vivo. Mechanistically, NAT10 depletion reduces the abundance of ac4C-modified tRNAs and decreases the translation efficiencies of mRNAs enriched for ac4C-modified tRNA-decoded codons. We further identify EGFR as a key downstream target that facilitates NAT10's oncogenic functions. In terms of clinical significance, we demonstrate that NAT10 depletion and gefitinib treatment synergistically inhibit ESCA progression in vitro and in vivo. Our data indicate the mechanisms underlying ESCA progression at the layer of mRNA translation control and provide molecular insights for the development of effective cancer therapeutic strategies.
Asunto(s)
Acetiltransferasas N-Terminal , Neoplasias , ARN de Transferencia , Animales , Ratones , Receptores ErbB/genética , Gefitinib/farmacología , Gefitinib/uso terapéutico , Biosíntesis de Proteínas , ARN de Transferencia/genética , Humanos , Línea Celular Tumoral , Acetiltransferasas N-Terminal/genética , Resistencia a AntineoplásicosRESUMEN
PCIF1 can mediate the methylation of N6,2'-O-dimethyladenosine (m6Am) in mRNA. Yet, the detailed interplay between PCIF1 and the potential cofactors and its pathological significance remain elusive. Here, we demonstrated that PCIF1-mediated cap mRNA m6Am modification promoted head and neck squamous cell carcinoma progression both in vitro and in vivo. CTBP2 was identified as a cofactor of PCIF1 to catalyze m6Am deposition on mRNA. CLIP-Seq data demonstrated that CTBP2 bound to similar mRNAs as compared with PCIF1. We then used the m6Am-Seq method to profile the mRNA m6Am site at single-base resolution and found that mRNA of TET2, a well-known tumor suppressor, was a major target substrate of the PCIF1-CTBP2 complex. Mechanistically, knockout of CTBP2 reduced PCIF1 occupancy on TET2 mRNA, and the PCIF1-CTBP2 complex negatively regulated the translation of TET2 mRNA. Collectively, our study demonstrates the oncogenic function of the epitranscriptome regulator PCIF1-CTBP2 complex, highlighting the importance of the m6Am modification in tumor progression.
Asunto(s)
Neoplasias de Cabeza y Cuello , Factores de Transcripción , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Proteínas Co-Represoras/genética , Neoplasias de Cabeza y Cuello/genética , Metilación , Proteínas Nucleares/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Factores de Transcripción/metabolismoRESUMEN
Aberrant RNA modifications lead to dysregulated gene expression and cancer progression. Ribosomal RNA (rRNA) accounts for more than 80% of a cell's total RNA, but the functions and molecular mechanisms underlying rRNA modifications in cancers are poorly understood. Here, we show that the 18S rRNA N6-methyladenosine (m6A) methyltransferase complex METTL5-TRMT112 is upregulated in various cancer types and correlated with poor prognosis. In addition, we demonstrate the critical functions of METTL5 in promoting hepatocellular carcinoma (HCC) tumorigenesis in vitro and in mouse models. Mechanistically, depletion of METTL5-mediated 18S rRNA m6A modification results in impaired 80S ribosome assembly and decreased translation of mRNAs involved in fatty acid metabolism. We further reveal that ACSL4 mediates the function of METTL5 on fatty acid metabolism and HCC progression, and targeting ACSL4 and METTL5 synergistically inhibits HCC tumorigenesis in vivo. Our study uncovers mechanistic insights underlying mRNA translation control and HCC tumorigenesis through lipid metabolism remodeling and provides a molecular basis for the development of therapeutic strategies for HCC treatment.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adenosina/análogos & derivados , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica/genética , Ácidos Grasos , Metabolismo de los Lípidos , Neoplasias Hepáticas/metabolismo , Ratones , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismoRESUMEN
BACKGROUND: Neuroblastoma (NBL) is the most common extra-cranial solid tumour in childhood, with prognosis ranging from spontaneous remission to high risk for rapid and fatal progression. Despite existing therapy approaches, the 5-year event-free survival (EFS) for patients with advanced NBL remains below 30%, emphasizing urgent necessary for novel therapeutic strategies. Studies have shown that epigenetic disorders play an essential role in the pathogenesis of NBL. However, the function and mechanism of N7-methylguanosine (m7G) methyltransferase in NBL remains unknown. METHODS: The expression levels of m7G tRNA methyltransferase Methyltransferase-like 1 (METTL1) were analyzed by querying the Gene Expression Omnibus (GEO) database and further confirmed by immunohistochemistry (IHC) assay. Kaplan-Meier, univariate and multivariate cox hazard analysis were performed to reveal the prognostic role of METTL1. Cell function assays were performed to evaluate how METTL1 works in proliferation, apoptosis and migration in cell lines and xenograft mouse models. The role of METTL1 on mRNA translation activity of NBL cells was measured using puromycin intake assay and polysome profiling assay. The m7G modified tRNAs were identified by tRNA reduction and cleavage sequencing (TRAC-seq). Ribosome nascent-chain complex-bound mRNA sequencing (RNC-seq) was utilized to identify the variation of gene translation efficiency (TE). Analyzed the codon frequency decoded by m7G tRNA to clarify the translation regulation and mechanism of m7G modification in NBL. RESULTS: This study found that METTL1 were significantly up-regulated in advanced NBL, which acted as an independent risk factor and predicted poor prognosis. Further in NBL cell lines and BALB/c-nu female mice, we found METTL1 played a crucial role in promoting NBL progression. Furthermore, m7G profiling and translation analysis revealed downregulation of METTL1 would inhibit puromycin intake efficiency of NBL cells, indicating that METTL1 did count crucially in regulation of NBL cell translation. With all tRNAs with m7G modification identified in NBL cells, knockdown of METTL1 would significantly reduce the levels of both m7G modification and m7G tRNAs expressions. Result of RNC-seq shew there were 339 overlapped genes with impaired translation in NBL cells upon METTL1 knockdown. Further analysis revealed these genes contained higher frequency of codons decoded by m7G-modified tRNAs and were enriched in oncogenic pathways. CONCLUSION: This study revealed the critical role and mechanism of METTL1-mediated tRNA m7G modification in regulating NBL progression, providing new insights for developing therapeutic approaches for NBL patients.
RESUMEN
Ribosome RNA (rRNA) accounts for more than 80% of the cell's total RNA, while the physiological functions of rRNA modifications are poorly understood. Mutations of 18S rRNA m6A methyltransferase METTL5 cause intellectual disability, microcephaly, and facial dysmorphisms in patients, however, little is known about the underlying mechanisms. In this study, we identified METTL5 protein complex and revealed that METTL5 mainly interacts with RNA binding proteins and ribosome proteins. Functionally, we found that Mettl5 knockout in mESCs leads to the abnormal craniofacial and nervous development. Moreover, using Mettl5 knockout mouse model, we further demonstrated that Mettl5 knockout mice exhibit intellectual disability, recapitulating the human phenotype. Mechanistically, we found that Mettl5 maintains brain function and intelligence by regulating the myelination process. Our study uncovered the causal correlation between mis-regulated 18S rRNA m6A modification and neural function defects, supporting the important physiological functions of rRNA modifications in human diseases.