Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País como asunto
Tipo del documento
Publication year range
1.
BMC Genomics ; 25(1): 611, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890579

RESUMEN

BACKGROUND: Ancient northern East Asians (ANEA) from the Yellow River region, who pioneered millet cultivation, play a crucial role in understanding the origins of ethnolinguistically diverse populations in modern China and the entire landscape of deep genetic structure and variation discovery in modern East Asians. However, the direct links between ANEA and geographically proximate modern populations, as well as the biological adaptive processes involved, remain poorly understood. RESULTS: Here, we generated genome-wide SNP data for 264 individuals from geographically different Han populations in Shandong. An integrated genomic resource encompassing both modern and ancient East Asians was compiled to examine fine-scale population admixture scenarios and adaptive traits. The reconstruction of demographic history and hierarchical clustering patterns revealed that individuals from the Shandong Peninsula share a close genetic affinity with ANEA, indicating long-term genetic continuity and mobility in the lower Yellow River basin since the early Neolithic period. Biological adaptive signatures, including those related to immune and metabolic pathways, were identified through analyses of haplotype homozygosity and allele frequency spectra. These signatures are linked to complex traits such as height and body mass index, which may be associated with adaptations to cold environments, dietary practices, and pathogen exposure. Additionally, allele frequency trajectories over time and a haplotype network of two highly differentiated genes, ABCC11 and SLC10A1, were delineated. These genes, which are associated with axillary odor and bilirubin metabolism, respectively, illustrate how local adaptations can influence the diversification of traits in East Asians. CONCLUSIONS: Our findings provide a comprehensive genomic dataset that elucidates the fine-scale genetic history and evolutionary trajectory of natural selection signals and disease susceptibility in Han Chinese populations. This study serves as a paradigm for integrating spatiotemporally diverse ancient genomes in the era of population genomic medicine.


Asunto(s)
Genética de Población , Haplotipos , Polimorfismo de Nucleótido Simple , Humanos , China , Genómica , Evolución Molecular , Frecuencia de los Genes , Pueblo Asiatico/genética , Genoma Humano
2.
Langmuir ; 40(2): 1461-1469, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38176063

RESUMEN

Although a wide variety of single-function coatings have been successfully developed, the integration of multiple functions onto a single coating has remained an immense challenge in the field. Here, we report a simple room-temperature fabrication of robust coatings with UV-shielding, light conversion, and antifogging functionalities. The addition of glutaraldehyde (GA) molecular cross-linker and carbon dot (CD) nanocross-linker with light conversion function to poly(vinyl alcohol) (PVA) resulted in the formation of robust spatial structures of coatings. The fluorescence intensity tests demonstrated that the coatings had an excellent ability to absorb and convert ultraviolet light into blue-violet light. Both cold-warm and hot-vapor tests showed that the coatings had excellent antifogging performance. To our surprise, no creases were observed after coatings were immersed in water for 1 month, indicating that these are much stronger than those reported so far. The 8H pencil hardness and wear resistance attested to their excellent mechanical properties. The current preparation method can be operated at ambient temperature and is not restricted by the substrate type and shape. Therefore, it may also expand the possibilities for future applications of coatings for glass windows, optical microscopes, eyeglasses, agricultural greenhouses, and so on.

3.
Ecotoxicol Environ Saf ; 253: 114700, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863161

RESUMEN

Naphthenic acids (NAs) are typical contaminants in heavily crude oil. Benzo[a]pyrene (B[a]P) is also a component of crude oil, but their combined effects have not been systematically explored. In this study, zebrafish (Danio rerio) were used as the test organisms, and behavioral indicators and enzyme activities were used as toxicity indicators. Combined with the effects of environmental concentrations, the toxic effects of low concentrations of commercially available NAs (0.5 mg/LNA) and benzo[a]pyrene (0.8 µg/LBaP) at single and compound exposures (0.5 mg/LNA and 0.8 µg/LBaP) were assayed in zebrafish, and transcriptome sequencing technology was used to explore the molecular mechanism of the two compounds affecting zebrafish from the molecular biology level. Sensitive molecular markers that could indicate the presence of contaminants were screened. The results showed that (1) zebrafish in the NA and BaP exposure groups exhibited increased locomotor behavior, and the mixed exposure group exhibited inhibition of locomotor behavior. Oxidative stress biomarkers showed increased activity under single exposure and decreased activity under the mixed exposure. (2) NA stress led to changes in the activity of transporters and the intensity of energy metabolism; BaP directly stimulates the pathway of actin production. When the two compounds are combined, the excitability of neurons in the central nervous system is decreased, and the actin-related genes are down-regulated. (3) After BaP and Mix treatments, genes were enriched in the cytokine-receptor interaction and actin signal pathway, while NA increased the toxic effect on the mixed treatment group. In general, the interaction between NA and BaP has a synergistic effect on the transcription of zebrafish nerve and motor behavior-related genes, resulting in increased toxicity under combined exposure. The changes in expression of various zebrafish genes are manifested in the changes in the normal movement behavior of zebrafish and the intensification of oxidative stress in the apparent behavior and physiological indicators. CAPSULE ABSTRACT: We investigated the toxicity and genetic alterations caused by NA, B[a]P, and their mixtures in zebrafish in an aquatic environment using transcriptome sequencing technology and comprehensive behavioral analysis. These changes involved energy metabolism, the generation of muscle cells, and the nervous system.


Asunto(s)
Petróleo , Contaminantes Químicos del Agua , Animales , Transcriptoma , Pez Cebra/genética , Benzo(a)pireno/toxicidad , Actinas , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad
4.
Ecotoxicol Environ Saf ; 227: 112928, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34710819

RESUMEN

Waterborne Benzo[a]pyrene (B[a]P) pollution is a global threat to aquatic organisms. The exposure to waterborne B[a]P can disrupt the normal locomotor behavior of zebrafish (Danio rerio), however, how it affect the locomotor behavior of adult zebrafish remains unclear. Herein, B[a]P at two concentrations (0.8 µg/L and 2.0 µg/L) were selected to investigate the molecular mechanisms of the affected locomotor behavior of zebrafish by B[a]P based on transcriptome profiling. Adverse effects of B[a]P exposure affecting locomotor behavior in zebrafish were studied by RNA sequencing, and the locomotion phenotype was acquired. The gene enrichment results showed that the differentially highly expressed genes (atp2a1, cdh2, aurka, fxyd1, clstn1, apoc1, mt-co1, tnnt3b, and fads2) of zebrafish are mainly enriched in adrenergic signaling in cardiomyocytes (dre04261) and locomotory behavior (GO:0007626). The movement trajectory plots showed an increase in the locomotor distance and velocity of zebrafish in the 0.8 µg/L group and the opposite in the 2.0 µg/L group. The results showed that B[a]P affects the variety of genes in zebrafish, including motor nerves, muscles, and energy supply, and ultimately leads to altered locomotor behavior.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Benzo(a)pireno/toxicidad , Locomoción , Transcriptoma , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/genética , Proteínas de Pez Cebra/genética
5.
Nanoscale ; 16(12): 6041-6052, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38411539

RESUMEN

Hygroscopic polymers are good candidates for antifogging coatings, but their long-term effectiveness is limited by the equilibrium between water absorption and expansion. As an efficient and environmentally friendly solution, photothermal materials are being introduced into the field of antifogging. However, there is a need for enhancement in the spectral characteristics of most photothermal materials within the visible light region. In addition, photothermal antifogging coatings often exhibit a delay in heating response, which hinders their ability to promptly evaporate condensed water droplets in the absence of illumination or during initial illumination. Here, a bilayer structure design of photothermal nanomaterials/hygroscopic polymers is proposed to achieve long-term antifogging under sunlight activation. Ensuring the rapid absorption of condensed water droplets on the coating surface, while simultaneously achieving efficient photothermal conversion for a swift temperature increase over the entire coating, is key to this approach, which will not only suppress early fogging but also lead to an exponential decrease of the nucleation rate of droplets. During this process, a dynamic equilibrium is gradually established between the condensation and evaporation of fog droplets, leading to long-term antifogging properties. The light transmittance of the composite coatings reaches as high as ca. 75% in the visible light region, making them well suited for a diverse range of transparent substrate and device applications. A clear field of view can be maintained for at least 6 h under 1 sun illumination above 65 °C hot steam. The antifogging/defogging performance is effectively demonstrated even under challenging non-ideal natural conditions, such as low solar irradiation during dusk or when placed indoors behind windows.

6.
Chem Commun (Camb) ; 60(29): 3938-3941, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38497681

RESUMEN

Free radical initiated bicyclization of 1,6-enynes with chloralkanes, is achieved via selective activation of the C(sp3)-H bond of the chloralkane, resulting in diverse polychlorinated/chlorinated polyheterocycles. Two kinds of transformations and a scaled-up experiment were performed to test the synthetic importance of the organic chlorides. Finally, a range of radical inhibition operations and radical clock tests were explored to support the reaction process.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda