RESUMEN
Aberrant protein post-translational modification is a hallmark of malignant tumors. Lysine succinylation (Ksucc) plays a vital role in cell energy metabolism in various cancers. However, whether succinylation can be catalyzed by acetyltransferase p300 remains unclear. In this study, we unveiled that p300 is a "writer" for succinylation, and p300-mediated Ksucc promotes cell glycometabolism in lung adenocarcinoma (LUAD). Specifically, our succinylome data revealed that EP300 deficiency leads to the systemic reduction of Ksucc, and 79.55% of the p300-succinylated proteins were found in the cytoplasm, which were primarily enriched in the carbohydrate metabolism process. Interestingly, deleting EP300 led to a notable decrease in Ksucc levels on several glycolytic enzymes, especially Phosphoglycerate Kinase 1 (PGK1). Mutation of the succinylated site of PGK1 notably hindered cell glycolysis and lactic acid excretion. Metabolomics in vivo indicated that p300-caused metabolic reprogramming was mainly attributed to the altered carbohydrate metabolism. In addition, 89.35% of LUAD patients exhibited cytoplasmic localization of p300, with higher levels in tumor tissues than adjacent normal tissues. High levels of p300 correlated with advanced tumor stages and poor prognosis of LUAD patients. Briefly, we disclose the activity of p300 to catalyze succinylation, which contributes to cell glucose metabolic reprogramming and malignant progression of lung cancer.
Asunto(s)
Adenocarcinoma del Pulmón , Proteína p300 Asociada a E1A , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Glucosa , Neoplasias Pulmonares/genética , Reprogramación Metabólica , Proteína p300 Asociada a E1A/genéticaRESUMEN
The development of the paper industry has led to the discharge of a large amount of papermaking waste liquid containing lignosulfonate. These lignin black liquids cause a lot of pollution in nature, which runs counter to the current environmental protection strategy under the global goal. Through the development and use of lignosulfonate in papermaking waste liquid to increase the utilization of harmful substances in waste liquid, we aim to promote waste liquid treatment and reduce environmental pollution. This paper proposes a new strategy to synthesize novel glue-free biocomposites with high-performance interfacial compatibility from papermaking by-product sodium lignosulfonate/chitosan (L/C) and waste bamboo. This L/C bamboo biocomposite material has good mechanical properties and durability, low formaldehyde emissions, a high recovery rate, meets the requirements of wood-based panels, and reduces environmental pollution. This method is low in cost, has the potential for large-scale production, and can effectively reduce the environmental pollution of the paper industry, promoting the recycling of biomass and helping the future manufacture of glue-free panels, which can be widely used in the preparation of bookcase, furniture, floor and so on.
RESUMEN
Rice straw hydrotropic lignin was extracted from p-Toluene sulfonic acid (p-TsOH) fractionation with a different combined delignification factor (CDF). Hydrotropic lignin characterization was systematically investigated, and alkaline lignin was also studied for the contrast. Results showed that the hydrotropic rice straw lignin particle was in nanometer scopes. Compared with alkaline lignin, the hydrotropic lignin had greater molecular weight. NMR analysis showed that ß-aryl ether linkage was well preserved at low severities, and the unsaturation in the side chain of hydrotropic lignin was high. H units and G units were preferentially degraded and subsequently condensed at high severity. High severity also resulted in the cleavage of part ß-aryl ether linkage. 31P-NMR showed the decrease in aliphatic hydroxyl groups and the increasing carboxyl group content at high severity. The maximum weight loss temperature of the hydrotropic lignin was in the range of 330-350 °C, higher than the alkaline lignin, and the glass conversion temperature (Tg) of the hydrotropic lignin was in the range of 107-125 °C, lower than that of the alkaline lignin. The hydrotropic lignin has high ß-aryl ether linkage content, high activity, nanoscale particle size, and low Tg, which is beneficial for its further valorization.
Asunto(s)
Lignina/química , Lignina/aislamiento & purificación , Oryza/química , Agua/química , Biomasa , Fraccionamiento Químico , Hidrólisis , Lignina/análisisRESUMEN
Hansen solubility parameters (HSPs) play a critical role in the majority of processes involving lignin depolymerization, separation, fractionation, and polymer blending, which are directly related to dissolution properties. However, the calculation of lignin HSPs is highly complicated due to the diversity of sources and the complexity of lignin structures. Despite their important role, lignin HSPs have been undervalued, attracting insufficient attention. This review summarizes the calculation methods for lignin HSPs and proposes a straightforward method based on lignin subunits. Furthermore, it highlights the crucial applications of lignin HSPs, such as identifying ideal solvents for lignin dissolution, selecting suitable solvents for lignin depolymerization and extraction, designing green solvents for lignin fractionation, and guiding the preparation of lignin-based composites. For instance, leveraging HSPs to design a series of solvents could potentially achieve sequential controllable lignin fractionation, addressing issues of low value-added applications of lignin resulting from poor homogeneity. Notably, HSPs serve as valuable tools for understanding the dissolution behavior of lignin. Consequently, we expect this review to be of great interest to researchers specializing in lignin and other macromolecules.
Asunto(s)
Lignina , Polímeros , Lignina/química , Solubilidad , Solventes/química , Fraccionamiento QuímicoRESUMEN
p300 acts as a transcription coactivator and an acetyltransferase that plays an important role in tumourigenesis and progression. In previous studies, it has been confirmed that p300 is an important regulator in regulating the evolution of malignant tumours and it also has extensive functions. From the perspective of non-posttranslational modification, it has been proven that p300 can participate in regulating many pathophysiological processes, such as activating oncogene transcription, promoting tumour cell growth, inducing apoptosis, regulating immune function and affecting embryo development. In recent years, p300 has been found to act as an acetyltransferase that catalyses a variety of protein modification types, such as acetylation, propanylation, butyylation, 2-hydroxyisobutyration, and lactylation. Under the catalysis of this acetyltransferase, it plays its crucial tumourigenic driving role in many malignant tumours. Therefore, the function of p300 acetyltransferase has gradually become a research hotspot. From a posttranslational modification perspective, p300 is involved in the activation of multiple transcription factors and additional processes that promote malignant biological behaviours, such as tumour cell proliferation, migration, and invasion, as well as tumour cell apoptosis, drug resistance, and metabolism. Inhibitors of p300 have been developed and are expected to become novel anticancer drugs for several malignancies. We review the characteristics of the p300 protein and its functional role in tumour from the posttranslational modification perspective, as well as the current status of p300-related inhibitor research, with a view to gaining a comprehensive understanding of p300.
Asunto(s)
Neoplasias , Factores de Transcripción , Humanos , Acetilación , Neoplasias/genética , Procesamiento Proteico-PostraduccionalRESUMEN
Osteoarthritis (OA) is a progressive and chronic disease. Identifying the early stages of OA disease is important for the treatment and care of patients. However, most state-of-the-art methods only use single-modal data to predict disease status, so that these methods usually ignore complementary information in multi-modal data. In this study, we develop an integrated multi-modal learning method (MMLM) that uses an interpretable strategy to select and fuse clinical, imaging, and demographic features to classify the grade of early-stage knee OA disease. MMLM applies XGboost and ResNet50 to extract two heterogeneous features from the clinical data and imaging data, respectively. And then we integrate these extracted features with demographic data. To avoid the negative effects of redundant features in a direct integration of multiple features, we propose a L1-norm-based optimization method (MMLM) to regularize the inter-correlations among the multiple features. MMLM was assessed using the Osteoarthritis Initiative (OAI) data set with machine learning classifiers. Extensive experiments demonstrate that MMLM improves the performance of the classifiers. Furthermore, a visual analysis of the important features in the multimodal data verified the relations among the modalities when classifying the grade of knee OA disease.
RESUMEN
To develop a characteristic "Lignin-first" strategy, the oxy-organosolv delignification processes under mild conditions were comprehensively investigated. Results showed that lignin yield could achieve about 50 % under the optimum process conditions of ethanol concentration 80 %, temperature 90 °C, liquid to wheat straw ratio 25:1 for powdery-scale substrates, which was 65.0 % higher than that for rod-scale substrates under the same conditions. The lignin structural and carbohydrate component results demonstrated the employment of oxygen induced great quantities of lignin dissolving out on the premise of little carbohydrate component (<1 %) and lignin structural (mainly ß-O-4 units) changes. Moreover, based on the molecular weight and polydiversity comparison results, the aqueous oxygen could transfer homogeneously in mild organosolv system and result in lignin degradation uniformly. Besides, the employment of oxygen assisted in not only extending the massive lignin removal stage to 30 min and 50 min for P-OEEL and R-OEEL respectively, but also boost the delignification rate with comparison to P-EL and R-EL. Lastly, the excellent anti-oxidant properties of lignin from oxy-organosolv process were demonstrated by scavenging DPPH and ABTS radicals. The economic calculations showed that the cost for lignin production were about 1.58USD/g lignin from powdery-scale wheat straw, providing a competitive route for high-value utilize waste biomass.
Asunto(s)
Lignina , Triticum , Lignina/química , Triticum/química , Solventes/química , Etanol/química , Carbohidratos , HidrólisisRESUMEN
Lightweight and highly compressible materials have received considerable attention in flexible pressure sensing devices. In this study, a series of porous woods (PWs) are produced by chemical removal of lignin and hemicellulose from natural wood by tuning treatment time from 0 to 15 h and extra oxidation through H2O2. The prepared PWs with apparent densities varying from 95.9 to 46.16 mg/cm3 tend to form a wave-shaped interwoven structure with improved compressibility (up to 91.89 % strain under 100 kPa). The sensor assembled from PW with treatment time of 12 h (PW-12) exhibits the optimal piezoresistive-piezoelectric coupling sensing properties. For the piezoresistive properties, it has high stress sensitivity of 15.14 kPa-1, covering a wide linear working pressure range of 0.06-100 kPa. For its piezoelectric potential, PW-12 shows a sensitivity of 0.443 V·kPa-1 with ultralow frequency detection as low as 0.0028 Hz, and good cyclability over 60,000 cycles under 0.41 Hz. The nature-derived all-wood pressure sensor shows obvious superiority in the flexibility for power supply requirement. More importantly, it presents fully decoupled signals without cross-talks in the dual-sensing functionality. Sensor like this is capable of monitoring various dynamic human motions, making it an extremely promising candidate for the next generation artificial intelligence products.
RESUMEN
Lignin is a natural and renewable aromatic polymer, but only about 2% of lignin is utilized with high added value. Polydispersity and heterogeneity are the key reasons for the difficulty in separation, fractionation, characterization, purification and utilization of lignin. However, the molecular weight of lignin is still described from the overall perspective of number-/weight-average molecular weight (Mn and Mw), which if far from enough to understand the heterogeneous and dispersed lignin. To provide a tool for understanding the molecular weight of lignin from a molecular perspective, an integral method for quantifying the molecular characteristics of lignin molecules at arbitrary molecular intervals on the molecular weight distribution curve of lignin was established. The molecular contents of wheat straw lignin as well as its soluble and insoluble fractions at different intervals were calculated. The ease of fractionation of small molecules with weights lower than 8000 g/mol into soluble fractions, and that of large molecules with weights higher than 10,000 g/mol into insoluble fractions were quantitatively analyzed. The established integral method will significantly help in the understanding the properties of lignin at the molecular-level, as well as the fractionation and utilization of lignin.
Asunto(s)
Fraccionamiento Químico , Lignina , Fraccionamiento Químico/métodos , Triticum , Peso MolecularRESUMEN
The separation of lignin from woody biomass and subsequent conversion into useful products requires a solution to the problem of its solubility. The expanded C9 formula of lignin, along with its atomic and functional groups, was determined by elemental analysis and NMRs spectroscopy. Based on the thus-obtained expanded C9 formula, the cohesion parameters of lignin dispersion (10.8-11.1 cal1/2·cm-3/2), polarity (4.15-4.31 cal1/2·cm-3/2), hydrogen bonding (6.30-7.38 cal1/2·cm-3/2), and solubility (13.2-14.0 cal1/2·cm-3/2) were respectively calculated using atomic and functional group contributions method. We established the relationship between lignin structure and lignin solubility parameters. The dissolution characteristics of wheat straw organic acid lignin, industrial eucalyptus kraft lignin, bamboo kraft lignin, and softwood kraft lignin in formic acid-H2O, acetic acid-H2O, and formic acid-acetic acid-H2O solvent systems were analyzed. The results indicate that the dissolution behavior of lignins follows the solubility parameters theory. We have developed a lignin dissolution model according to the lignin structure. This model obeys the solubility parameter theory, overcomes the limitations of the "like dissolves like" principle in organic acid-water systems, and provides a concise method for the selection of lignin solvent systems and the quantitative determination of their solvent composition.
Asunto(s)
Ácido Acético/química , Formiatos/química , Lignina/química , Solventes/química , Solubilidad , Triticum/química , Agua/químicaRESUMEN
Pareuchiloglanis kamengensis belongs to the family of Sisoridae, Pareuchiloglanis. It is distributed in the Yarlung Zangbo River, the Irrawaddy River, the Nujiang River, and the Lancang River in southwestern China. In this study, we first published the complete mitochondrial genome sequence of Pareuchiloglanis kamengensis, which was 16,589 bp in length. This genome consists of 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a non-coding A + T-rich region. The PCGs start with a traditional ATG except for COX1 and NAD3, which start with GTG and ATA instead, respectively, and end with stop codon TAA, TAG, TA, or a single T base. All tRNA have the typical clover-leaf structure. The phylogenetic tree of the whole mitogenome sequence is constructed by using neighbor-joining (NJ) method and the phylogenetic relationship among the family Sisoridae is further analyzed. We except to provide the theoretical basis for the further study of the phylogenetic relationship, taxonomic status, and conservation and management of genetic resources of Sisoridae catfishes.
RESUMEN
Pseudecheneis sulcata belongs to Sisoridae, Pseudecheneis, which is mainly distributed in India and Tibet of China, and is located in the Motuo and Chayu in the lower reaches of the Yarlung Zangbo River in Tibet. In the present study, we obtained the complete mitochondrial genome sequence of Pseudecheneis sulcata, which was 16,535 bp in length. This genome consisted of 13 protein-coding genes, 22 tRNAgenes, 2 rRNA genes and a non-coding control region. The protein-coding genes have three start codons (GTG, ATG, and CTA) and four stop codons, including three complete stop codons and one incomplete stop codon. To verify the accuracy and utility of newly determined mitogenome sequences by constructing a species phylogenetic relationship tree of species, we expect to use the full mitochondrial gene sequence to interpret related evolutionary events.