Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Anal Methods Chem ; 2024: 9811466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742189

RESUMEN

SIPI6398 is a novel anti-schizophrenia agent with a new mechanism of action and demonstrates better target selectivity and safety compared to its competitors. However, few in vivo studies on the pharmacokinetics and bioavailability of SIPI6398 have been performed. A rapid and simple ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach was developed for accurate quantification of SIPI6398 in rat plasma. A simple protein precipitation of acetonitrile-methanol (9 : 1, v/v) was used to treat plasma. Chromatography was performed on a UPLC HSS T3 column (50 mm × 2.1 mm, 1.8 µm) at a flow rate of 0.4 ml/min. The mobile phase consisted of acetonitrile-water (with 0.1% formic acid) and gradient elution was used, and the elution time was 4 minutes. Quantitative analysis was performed using electrospray ionization (ESI) in positive ion detection mode with multiple reaction monitoring (MRM) mode. To evaluate the pharmacokinetics and bioavailability, SIPI6398 was administered to rats in two different ways: oral (4 mg/kg) and intravenous (2 mg/kg) administration. The calibration curve for the UPLC-MS/MS approach shows excellent linearity in the range of 1-2000 ng/mL with an r value above 0.99. The precision, accuracy, recovery, matrix effect, and stability results all meet the criteria established for biological analytical methods. The UPLC-MS/MS method was successfully applied it to pharmacokinetics study of SIPI6398. The bioavailability of SIPI6398 was calculated to be 13.2%. These studies have the potential to contribute towards a more comprehensive comprehension of the pharmacokinetics and bioavailability of SIPI6398.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39153406

RESUMEN

In this experiment, a rapid and highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology was established and validated for the quantitation and pharmacokinetic analysis of eupafolin in rat plasma, utilizing licochalcone B as internal standard (IS). After liquid-liquid extraction of the analyte samples by ethyl acetate, chromatographic separation was achieved using a UPLC HSS T3 column under gradient elution conditions, with the mobile phase consisting of acetonitrile and water (with 0.1 % formic acid). Eupafolin was quantified by multiple reaction monitoring (MRM) in electrospray positive-ion mode (ESI+), employing the mass transition m/z 315.2 â†’ 300.3 for eupafolin and m/z 285.4 â†’ 270.3 for IS. Eupafolin demonstrated excellent linear relationship (r > 0.99) over the concentration range of 1.25-1250 ng/mL, with the lower limit of quantification (LLOQ) of the UPLC-MS/MS assay determined as 1.25 ng/mL. Method validation followed the bioanalytical method validation criteria outlined by the FDA. The accuracy of eupafolin ranged from 86.7 % to 111.2 %, and the precision was less than 12 %. The matrix effect was observed at 92.8 %-98.6 %, while the recoveries exceeded 83.2 %. The established UPLC-MS/MS assay was successfully employed for the pharmacokinetic evaluation of eupafolin in rats. The half-lives (t1/2z) were determined to be 1.4 ± 0.4 h and 2.5 ± 1.4 h for intravenous and oral administration, respectively. Notably, the bioavailability of eupafolin was relatively low (8.3 %). The optimized UPLC-MS/MS technology showed highly sensitive, selective, and effective, rendering it suitable for the pharmacokinetics of eupafolin in preclinical practice.

3.
Sci Total Environ ; 914: 169671, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184251

RESUMEN

To increase the efficiency of managing backup water resources, it is critical to identify and allocate pollution sources. Source apportionment of dissolved organic matter (DOM) was investigated in our work. Parallel factor analysis (PARAFAC) and the Spearman correlation analysis were used for source identification. After that, a newly hybrid model applying the fuzzy c-means and support vector regression (FCM-SVR) was employed for source apportionment compared to receptor models. The results demonstrated that the FCM-SVR model exhibited excellent generalization, and only required standardization and normalization as pre-processing steps for dataset. According to the results, microbial sources played a key role (28.1 %) in the formation potential of disinfection byproducts (DBPFPs). Additionally, shipping marine sources exhibited a substantial contribution (21.2 %) to DBPFPs. The prediction accuracy of DBPFPs was matched or exceeded receptor models, and the R2 of DOC (0.884) was significantly high. Therefore, we recommend the FCM-SVR model combined with PARAFAC to trace the source of DBPFPs as its significant effectiveness in source identification, source apportionment, and prediction accuracy, possessing the potential for further applicability in tracking more organic compounds. ENVIRONMENTAL IMPLICATION: The disinfection byproducts precursors in water sources, which were thought to be hazardous materials in this study, are proved to be chlorinated into carcinogenic disinfection byproducts (DBPs) during drinking water treatment, However, the source apportionment methods of DBPs are not well developed compared to other inorganic matter, e.g., heavy metals and ammonia nitrogen. We proposed a new FCM-SVR model to trace the source of DBPs, which required easier pre-treatment and resulted a better source apportionment and prediction accuracy. As a result, it could provide a different prospect and useful management advices to trace the source of DBPs.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección/métodos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Nitrógeno/análisis , Halogenación , Aprendizaje Automático
4.
Int J Anal Chem ; 2024: 7971021, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463657

RESUMEN

Ziyuglycoside I and ziyuglycoside II are important active components of Sanguisorba officinalis L., which have excellent pharmacological effects, such as antioxidant and anticancer effects. However, the bioavailability of ziyuglycoside I and ziyuglycoside II has not been reported. This work aims to establish a UPLC-MS/MS method to study the pharmacokinetics of ziyuglycoside I and ziyuglycoside II in rats under different administration routes (intragastric and intravenous administration) and to calculate the bioavailability. The concentration of ziyuglycoside I and ziyuglycoside II in rat plasma in the range of 2-2000 ng/mL showed a good linear relationship (r > 0.99). The intra-day accuracies of ziyuglycoside I and ziyuglycoside II ranged from 87% to 110%, and the inter-day accuracies ranged from 97% to 109%. The intra-day precision was less than 15% and the inter-day precision was less than 14%. The matrix effects ranged from 88% to 113%. The recoveries were all above 84%. The developed UPLC-MS/MS method for the determination of ziyuglycoside I and ziyuglycoside II in rat plasma was applied to pharmacokinetics. The bioavailability of ziyuglycoside I and ziyuglycoside II was measured at 2.6% and 4.6%, respectively.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda