Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Angew Chem Int Ed Engl ; 63(29): e202405706, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38687567

RESUMEN

The utility of unconventional noncovalent interactions (NCIs) such as chalcogen bonding has lately emerged as a robust platform to access synthetically difficult glycosides stereoselectively. Herein, we disclose the versatility of a phosphonochalcogenide (PCH) catalyst to facilitate access into the challenging, but biologically interesting 7-membered ring α,α'-C-disubstituted oxepane core through an α-selective strain-release C-glycosylation. Methodically, this strategy represents a switch from more common but entropically less desired macrocyclizations to a thermodynamically favored ring-expansion approach. In light of the general lack of stereoselective methods to access C-septanosides, a remarkable palette of silyl-based nucleophiles can be reliably employed in our method. This include a broad variety of useful synthons, such as easily available silyl-allyl, silyl-enol ether, silyl-ketene acetal, vinylogous silyl-ketene acetal, silyl-alkyne and silylazide reagents. Mechanistic investigations suggest that a mechanistic shift towards an intramolecular aglycone transposition involving a pentacoordinate silicon intermediate is likely responsible in steering the stereoselectivity.

2.
Aquat Toxicol ; 272: 106980, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838504

RESUMEN

Dibutyl phthalate (DBP) is a widely-used plasticizer that is dispersed in various environments, causing significant pollution and health risks. The toxic mechanism of DBP has been discussed in recent years, while the susceptibility of mitochondrial DNA (mtDNA) to DBP exposure and the resulting damage remain unclear. In this study, maternal zebrafish were exposed to environmentally relevant concentration of DBP for 0, 2, 4, and 6 weeks. Results showed that DBP exposure impaired health status, leading to the reduced body length and weight, condition factor, hepatosomatic index, and gonadosomatic index. Furthermore, DBP exposure induced oxidative stress and ATP deficiency in the gill and liver in a time-dependent manner. The oxidized mtDNA (ox-mtDNA) levels in the D-loop and ND1 regions were assessed in different tissues, showing distinct response patterns. The high energy-consuming tissues such as heart, brain, gill, and liver exhibited elevated susceptibility to mitochondrial damage, with a rapid increase in ox-mtDNA levels in the short term. Conversely, in muscle, ovary, eggs, and offspring, ox-mtDNA gradually accumulated over the exposure period. Notably, the ox-mtDNA levels in the D-loop region of blood showed a prompt response to DBP exposure, making it convenient for evaluation. Additionally, decreased hatching rates, increased mortality, lipoperoxidation, and depressed swimming performance were observed in offspring following maternal DBP exposure, suggesting the inherited impairments of maternal mtDNA. These findings highlight the potential for ox-mtDNA to serve as a convenient biomarker for environmental contamination, aiding in ecological risk assessment and forewarning systems in aquatic environment.


Asunto(s)
ADN Mitocondrial , Dibutil Ftalato , Estrés Oxidativo , Contaminantes Químicos del Agua , Pez Cebra , Animales , Contaminantes Químicos del Agua/toxicidad , Dibutil Ftalato/toxicidad , Femenino , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/genética , Estrés Oxidativo/efectos de los fármacos , Branquias/efectos de los fármacos , Branquias/metabolismo , Exposición Materna , Daño del ADN , Hígado/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda