RESUMEN
The steady flow of lactic acid (LA) from tumor cells to the extracellular space via the monocarboxylate transporter symport system suppresses antitumor T cell immunity. However, LA is a natural energy metabolite that can be oxidized in the mitochondria and could potentially stimulate T cells. Here we show that the lactate-lowering mood stabilizer lithium carbonate (LC) can inhibit LA-mediated CD8+ T cell immunosuppression. Cytoplasmic LA increased the pumping of protons into lysosomes. LC interfered with vacuolar ATPase to block lysosomal acidification and rescue lysosomal diacylglycerol-PKCθ signaling to facilitate monocarboxylate transporter 1 localization to mitochondrial membranes, thus transporting LA into the mitochondria as an energy source for CD8+ T cells. These findings indicate that targeting LA metabolism using LC could support cancer immunotherapy.
Asunto(s)
Antimaníacos , Ácido Láctico , Carbonato de Litio , Mitocondrias , Neoplasias , Humanos , Linfocitos T CD8-positivos , Ácido Láctico/metabolismo , Carbonato de Litio/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias/metabolismo , Antimaníacos/farmacologíaRESUMEN
Ab initio calculations have an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions1-3 to quantum chemistry4-6 and from atomic and molecular systems7-9 to nuclear physics10-14. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computational method to handle. Here we address the problem by introducing an approach called wavefunction matching. Wavefunction matching transforms the interaction between particles so that the wavefunctions up to some finite range match that of an easily computable interaction. This allows for calculations of systems that would otherwise be impossible owing to problems such as Monte Carlo sign cancellations. We apply the method to lattice Monte Carlo simulations15,16 of light nuclei, medium-mass nuclei, neutron matter and nuclear matter. We use high-fidelity chiral effective field theory interactions17,18 and find good agreement with empirical data. These results are accompanied by insights on the nuclear interactions that may help to resolve long-standing challenges in accurately reproducing nuclear binding energies, charge radii and nuclear-matter saturation in ab initio calculations19,20.
RESUMEN
The formation of macrophage-derived foam cells has been recognized as the pathological hallmark of atherosclerotic diseases. However, the pathological evolution dynamics and underlying regulatory mechanisms remain largely unknown. Herein, we introduce a single-particle rotational microrheology method for pathological staging of macrophage foaming and antiatherosclerotic explorations by probing the dynamic changes of lysosomal viscous feature over the pathological evolution progression. The principle of this method involves continuous monitoring of out-of-plane rotation-caused scattering brightness fluctuations of the gold nanorod (AuNR) probe-based microrheometer and subsequent determination of rotational relaxation time to analyze the viscous feature in macrophage lysosomes. With this method, we demonstrated the lysosomal viscous feature as a robust pathological reporter and uncovered three distinct pathological stages underlying the evolution dynamics, which are highly correlated with a pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback loop. We also validated the potential of this positive feedback loop as a promising therapeutic target and revealed the time window-dependent efficacy of NLRP3 inflammasome-targeted drugs against atherosclerotic diseases. To our knowledge, the pathological staging of macrophage foaming and the pathological stage-dependent activation of the NLRP3 inflammasome-involved positive feedback mechanism have not yet been reported. These findings provide insights into in-depth understanding of evolutionary features and regulatory mechanisms of macrophage foaming, which can benefit the analysis of effective therapeutical drugs as well as the time window of drug treatment against atherosclerotic diseases in preclinical studies.
Asunto(s)
Aterosclerosis , Células Espumosas , Oro , Proteína con Dominio Pirina 3 de la Familia NLR , Aterosclerosis/patología , Animales , Oro/química , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células Espumosas/patología , Células Espumosas/metabolismo , Macrófagos/patología , Macrófagos/metabolismo , Humanos , Lisosomas/metabolismo , Inflamasomas/metabolismo , Nanotubos/química , ReologíaRESUMEN
Exploring the potential lead compounds for Alzheimer's disease (AD) remains one of the challenging tasks. Here, we report that the plant extract conophylline (CNP) impeded amyloidogenesis by preferentially inhibiting BACE1 translation via the 5' untranslated region (5'UTR) and rescued cognitive decline in an animal model of APP/PS1 mice. ADP-ribosylation factor-like protein 6-interacting protein 1 (ARL6IP1) was then found to mediate the effect of CNP on BACE1 translation, amyloidogenesis, glial activation, and cognitive function. Through analysis of the 5'UTR-targetd RNA-binding proteins by RNA pulldown combined with LC-MS/MS, we found that FMR1 autosomal homolog 1 (FXR1) interacted with ARL6IP1 and mediated CNP-induced reduction of BACE1 by regulating the 5'UTR activity. Without altering the protein levels of ARL6IP1 and FXR1, CNP treatment promoted ARL6IP1 interaction with FXR1 and inhibited FXR1 binding to the 5'UTR both in vitro and in vivo. Collectively, CNP exhibited a therapeutic potential for AD via ARL6IP1. Through pharmacological manipulation, we uncovered a dynamic interaction between FXR1 and the 5'UTR in translational control of BACE1, adding to the understanding of the pathophysiology of AD.
Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Regiones no Traducidas 5' , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Cromatografía Liquida , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Biosíntesis de Proteínas , Espectrometría de Masas en TándemRESUMEN
BACKGROUND: The relation between sodium intake and cardiovascular disease remains controversial, owing in part to inaccurate assessment of sodium intake. Assessing 24-hour urinary excretion over a period of multiple days is considered to be an accurate method. METHODS: We included individual-participant data from six prospective cohorts of generally healthy adults; sodium and potassium excretion was assessed with the use of at least two 24-hour urine samples per participant. The primary outcome was a cardiovascular event (coronary revascularization or fatal or nonfatal myocardial infarction or stroke). We analyzed each cohort using consistent methods and combined the results using a random-effects meta-analysis. RESULTS: Among 10,709 participants, who had a mean (±SD) age of 51.5±12.6 years and of whom 54.2% were women, 571 cardiovascular events were ascertained during a median study follow-up of 8.8 years (incidence rate, 5.9 per 1000 person-years). The median 24-hour urinary sodium excretion was 3270 mg (10th to 90th percentile, 2099 to 4899). Higher sodium excretion, lower potassium excretion, and a higher sodium-to-potassium ratio were all associated with a higher cardiovascular risk in analyses that were controlled for confounding factors (P≤0.005 for all comparisons). In analyses that compared quartile 4 of the urinary biomarker (highest) with quartile 1 (lowest), the hazard ratios were 1.60 (95% confidence interval [CI], 1.19 to 2.14) for sodium excretion, 0.69 (95% CI, 0.51 to 0.91) for potassium excretion, and 1.62 (95% CI, 1.25 to 2.10) for the sodium-to-potassium ratio. Each daily increment of 1000 mg in sodium excretion was associated with an 18% increase in cardiovascular risk (hazard ratio, 1.18; 95% CI, 1.08 to 1.29), and each daily increment of 1000 mg in potassium excretion was associated with an 18% decrease in risk (hazard ratio, 0.82; 95% CI, 0.72 to 0.94). CONCLUSIONS: Higher sodium and lower potassium intakes, as measured in multiple 24-hour urine samples, were associated in a dose-response manner with a higher cardiovascular risk. These findings may support reducing sodium intake and increasing potassium intake from current levels. (Funded by the American Heart Association and the National Institutes of Health.).
Asunto(s)
Enfermedades Cardiovasculares/etiología , Sodio en la Dieta/efectos adversos , Adulto , Anciano , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Femenino , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Potasio/administración & dosificación , Potasio/orina , Estudios Prospectivos , Sodio/orina , Sodio en la Dieta/administración & dosificaciónRESUMEN
With the emergence of multidrug-resistant bacteria, antimicrobial peptides (AMPs) offer promising options for replacing traditional antibiotics to treat bacterial infections, but discovering and designing AMPs using traditional methods is a time-consuming and costly process. Deep learning has been applied to the de novo design of AMPs and address AMP classification with high efficiency. In this study, several natural language processing models were combined to design and identify AMPs, i.e. sequence generative adversarial nets, bidirectional encoder representations from transformers and multilayer perceptron. Then, six candidate AMPs were screened by AlphaFold2 structure prediction and molecular dynamic simulations. These peptides show low homology with known AMPs and belong to a novel class of AMPs. After initial bioactivity testing, one of the peptides, A-222, showed inhibition against gram-positive and gram-negative bacteria. The structural analysis of this novel peptide A-222 obtained by nuclear magnetic resonance confirmed the presence of an alpha-helix, which was consistent with the results predicted by AlphaFold2. We then performed a structure-activity relationship study to design a new series of peptide analogs and found that the activities of these analogs could be increased by 4-8-fold against Stenotrophomonas maltophilia WH 006 and Pseudomonas aeruginosa PAO1. Overall, deep learning shows great potential in accelerating the discovery of novel AMPs and holds promise as an important tool for developing novel AMPs.
Asunto(s)
Antibacterianos , Aprendizaje Profundo , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias Gramnegativas , Péptidos Antimicrobianos , Bacterias Grampositivas , Simulación de Dinámica MolecularRESUMEN
Osteoarthritis (OA) is an age-related or post-traumatic degenerative whole joint disease characterized by the rupture of articular cartilage homeostasis, the regulatory mechanisms of which remain elusive. This study identifies the essential role of heterogeneous nuclear ribonucleoprotein K (hnRNPK) in maintaining articular cartilage homeostasis. Hnrnpk expression is markedly downregulated in human and mice OA cartilage. The deletion of Hnrnpk effectively accelerates the development of post-traumatic and age-dependent OA in mice. Mechanistically, the KH1 and KH2 domain of Hnrnpk bind and degrade the mRNA of WWC1. Hnrnpk deletion increases WWC1 expression, which in turn leads to the activation of Hippo signaling and ultimately aggravates OA. In particular, intra-articular injection of LPA and adeno-associated virus serotype 5 expressing WWC1 RNA interference ameliorates cartilage degeneration induced by Hnrnpk deletion, and intra-articular injection of adeno-associated virus serotype 5 expressing Hnrnpk protects against OA. Collectively, this study reveals the critical roles of Hnrnpk in inhibiting OA development through WWC1-dependent downregulation of Hippo signaling in chondrocytes and defines a potential target for the prevention and treatment of OA.
Asunto(s)
Cartílago Articular , Condrocitos , Ribonucleoproteína Heterogénea-Nuclear Grupo K , Vía de Señalización Hippo , Osteoartritis , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Cartílago Articular/metabolismo , Cartílago Articular/patología , Condrocitos/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Osteoartritis/metabolismo , Osteoartritis/genética , Osteoartritis/etiología , Osteoartritis/patología , Osteoartritis/terapia , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
As an enabling technique of synthetic biology, the scale of DNA assembly largely determines the scale of genetic manipulation. However, large DNA assembly technologies are generally cumbersome and inefficient. Here, we developed a YLC (yeast life cycle)-assembly method that enables in vivo iterative assembly of large DNA by nesting cell-cell transfer of assembled DNA in the cycle of yeast mating and sporulation. Using this method, we successfully assembled a hundred-kilobase (kb)-sized endogenous yeast DNA and a megabase (Mb)-sized exogenous DNA. For each round, over 104 positive colonies per 107 cells could be obtained, with an accuracy ranging from 67% to 100%. Compared with other Mb-sized DNA assembly methods, this method exhibits a higher success rate with an easy-to-operate workflow that avoid in vitro operations of large DNA. YLC-assembly lowers the technical difficulty of Mb-sized DNA assembly and could be a valuable tool for large-scale genome engineering and synthetic genomics.
Asunto(s)
Técnicas Genéticas , Saccharomyces cerevisiae , Biología Sintética , Estadios del Ciclo de Vida , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Biología Sintética/métodosRESUMEN
As nitric oxide (NO) plays significant roles in a variety of physiological processes, the capability for real-time and accurate detection of NO in live organisms is in great demand. Traditional assessments of NO rely on indirect colorimetric techniques or electrochemical sensors that often comprise rigid constituent materials and can hardly satisfy sensitivity and spatial resolution simultaneously. Here, we report a flexible and highly sensitive biosensor based on organic electrochemical transistors (OECTs) capable of continuous and wireless detection of NO in biological systems. By modifying the geometry of the active channel and the gate electrodes of OECTs, devices achieve optimum signal amplification of NO. The sensor exhibits a low response limit, a wide linear range, high sensitivity, and excellent selectivity, with a miniaturized active sensing region compared with a conventional electrochemical sensor. The device demonstrates continuous detection of the nanomolar range of NO in cultured cells for hours without significant signal drift. Real-time and wireless measurement of NO is accomplished for 8 d in the articular cavity of New Zealand White rabbits with anterior cruciate ligament (ACL) rupture injuries. The observed high level of NO is associated with the onset of osteoarthritis (OA) at the later stage. The proposed device platform could provide critical information for the early diagnosis of chronic diseases and timely medical intervention to optimize therapeutic efficacy.
Asunto(s)
Técnicas Biosensibles , Óxido Nítrico , Osteoartritis , Tecnología Inalámbrica , Animales , Técnicas Biosensibles/métodos , Enfermedad Crónica , Diagnóstico Precoz , Técnicas Electroquímicas/métodos , Electrodos , Óxido Nítrico/análisis , Osteoartritis/diagnóstico , ConejosRESUMEN
Printed electronic technology serves as a key component in flexible electronics and wearable devices, yet achieving compatibility with both high resolution and high efficiency remains a significant challenge. Here, we propose a rapid fabrication method of high-resolution nanoparticle microelectronics via self-assembly and transfer printing. The tension gradient-electrostatic attraction composite-induced nanoparticle self-assembly strategy is constructed, which can significantly enhance the self-assembly efficiency, stability, and coverage by leveraging the meniscus Marangoni effect and the electric double-layer effect. The close-packed nanoparticle self-assembly layer can be rapidly formed on microstructure surfaces over a large area. Inspired by ink printing, a transfer printing strategy is further proposed to transform the self-assembly layer into conformal micropatterns. Large-area, high-resolution (2 µm), and ultrathin (1 µm) nanoparticle microelectronics can be stably fabricated, yielding a significant improvement over fluid printing methods. The unique deformability, recoverability, and scalability of nanoparticle microelectronics are revealed, providing promising opportunities for various academic and real applications.
RESUMEN
BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS), a lethal tick-borne hemorrhagic fever, prompted our investigation into prognostic predictors and potential drug targets using plasma Olink Proteomics. METHODS: Employing the Olink assay, we analyzed 184 plasma proteins in 30 survivors and 8 nonsurvivors of SFTS. Validation was performed in a cohort of 154 patients with SFTS via enzyme-linked immunosorbent assay. We utilized the Drug-Gene Interaction Database to identify protein-drug interactions. RESULTS: Nonsurvivors exhibited 110 differentially expressed proteins as compared with survivors, with functional enrichment in the cell chemotaxis-related pathway. Thirteen differentially expressed proteins-including C-C motif chemokine 20 (CCL20), calcitonin gene-related peptide alpha, and pleiotrophin-were associated with multiple-organ dysfunction syndrome. CCL20 emerged as the top predictor of death, demonstrating an area under the curve of 1 (P = .0004) and 0.9033 (P < .0001) in the discovery and validation cohorts, respectively. Patients with CCL20 levels exceeding 45.74â pg/mL exhibited a fatality rate of 45.65%, while no deaths occurred in those with lower CCL20 levels. Furthermore, we identified 202 Food and Drug Administration-approved drugs targeting 37 death-related plasma proteins. CONCLUSIONS: Distinct plasma proteomic profiles characterize SFTS cases with different outcomes, with CCL20 emerging as a novel, sensitive, accurate, and specific biomarker for predicting SFTS prognosis.
Asunto(s)
Quimiocina CCL20 , Proteómica , Síndrome de Trombocitopenia Febril Grave , Humanos , Quimiocina CCL20/sangre , Femenino , Pronóstico , Masculino , Síndrome de Trombocitopenia Febril Grave/sangre , Síndrome de Trombocitopenia Febril Grave/virología , Proteómica/métodos , Anciano , Persona de Mediana Edad , Biomarcadores/sangre , Adulto , Anciano de 80 o más Años , Estudios de CohortesRESUMEN
The intricate orchestration of osteoporosis (OP) pathogenesis remains elusive. Mounting evidence suggests that angiogenesis-driven osteogenesis serves as a crucial foundation for maintaining bone homeostasis. This study aimed to explore the potential of the endothelial platelet-derived growth factor receptor-ß (PDGFR-ß) in mitigating bone loss through its facilitation of H-type vessel formation. Our findings demonstrate that the expression level of endothelial PDGFR-ß is reduced in samples obtained from individuals suffering from OP, as well as in ovariectomy mice. Depletion of PDGFR-ß in endothelial cells ameliorates angiogenesis-mediated bone formation in mice. The regulatory influence of endothelial PDGFR-ß on H-type vessels is mediated through the PDGFRß-P21-activated kinase 1-Notch1 intracellular domain signaling cascade. In particular, the endothelium-specific enhancement of PDGFR-ß facilitates H-type vessels and their associated bone formation in OP. Hence, the strategic targeting of endothelial PDGFR-ß emerges as a promising therapeutic approach for the management of OP in the near future.
Asunto(s)
Neovascularización Fisiológica , Osteogénesis , Osteoporosis , Receptor Notch1 , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Transducción de Señal , Quinasas p21 Activadas , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Animales , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/genética , Humanos , Femenino , Ratones , Receptor Notch1/metabolismo , Receptor Notch1/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Células Endoteliales/metabolismo , Ratones Endogámicos C57BL , Células Endoteliales de la Vena Umbilical Humana/metabolismo , AngiogénesisRESUMEN
BACKGROUND: The Domain of unknown function 679 membrane protein (DMP) family, which is unique to plants, plays a crucial role in reproductive development, stress response and aging. A comprehensive study was conducted to identify the DMP gene members of oat (Avena sativa) and to investigate their structural features and tissue-specific expression profiles. Utilizing whole genome and transcriptome data, we analyzed the physicochemical properties, gene structure, cis-acting elements, phylogenetic relationships, conserved structural (CS) domains, CS motifs and expression patterns of the AsDMP family in A. sativa. RESULTS: The DMP family genes of A. sativa were distributed across 17 chromosomal scaffolds, encompassing a total of 33 members. Based on phylogenetic relationships, the AsDMP genes were classified into five distinct subfamilies. The gene structure also suggests that A. sativa may have undergone an intron loss event during its evolution. Covariance analysis indicates that genome-wide duplication and segmental duplication may be the major contributor to the expansion of the AsDMP gene family. Ka/Ks selective pressure analysis of the AsDMP gene family suggests that DMP gene pairs are generally conserved over evolutionary time. The upstream promoters of these genes contain several cis-acting elements, suggesting a potential role in abiotic stress responses and hormone induction. Transcriptome data revealed that the expression patterns of the DMP genes are involved in tissue and organ development. In this study, the AsDMP genes (AsDMP1, AsDMP19, and AsDMP22) were identified as potential regulators of seed senescence in A. sativa. These genes could serve as candidates for breeding studies focused on seed longevity and anti-aging germplasm in A. sativa. The study provides valuable insights into the regulatory mechanisms of the AsDMP gene family in the aging process of A. sativa germplasm and offers theoretical support for further function investigation into the functions of AsDMP genes and the molecular mechanisms underlying seed anti-aging. CONCLUSIONS: This study identified the AsDMP genes as being involved in the aging process of A. sativa seeds, marking the first report on the potential role of DMP genes in seed aging for A. sativa.
Asunto(s)
Avena , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Semillas , Avena/genética , Avena/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Genómica , Genoma de Planta , Regiones Promotoras Genéticas , Evolución Molecular , Estrés Fisiológico/genéticaRESUMEN
PURPOSE: The study aimed to investigate the diagnostic accuracy of prostate health index (PHI) and apparent diffusion coefficient (ADC) values in predicting prostate cancer (PCa) and construct a nomogram for the prediction of PCa and clinically significant PCa (CSPCa) in Prostate Imaging-Reporting and Data System (PI-RADS) three lesions cohort. METHODS: This study prospectively enrolled 301 patients who underwent multiparametric magnetic resonance (mpMRI) and were scheduled for prostate biopsy. The receiver operating characteristic curve (ROC) was performed to estimate the diagnostic accuracy of each predictor. Univariable and multivariable logistic regression analysis was conducted to ascertain hidden risk factors and constructed nomograms in PI-RADS three lesions cohort. RESULTS: In the whole cohort, the area under the ROC curve (AUC) of PHI is relatively high, which is 0.779. As radiographic parameters, the AUC of PI-RADS and ADC values was 0.702 and 0.756, respectively. The utilization of PHI and ADC values either individually or in combination significantly improved the diagnostic accuracy of the basic model. In PI-RADS three lesions cohort, the AUC for PCa was 0.817 in the training cohort and 0.904 in the validation cohort. The AUC for CSPCa was 0.856 in the training cohort and 0.871 in the validation cohort. When applying the nomogram for predicting PCa, 50.0% of biopsies could be saved, supplemented by 6.9% of CSPCa being missed. CONCLUSION: PHI and ADC values can be used as predictors of CSPCa. The nomogram included PHI, ADC values and other clinical predictors demonstrated an enhanced capability in detecting PCa and CSPCa within PI-RADS three lesions cohort.
Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Próstata/patología , Imagen por Resonancia Magnética , Neoplasias de la Próstata/patología , Antígeno Prostático Específico/análisis , Estudios Retrospectivos , BiopsiaRESUMEN
BACKGROUND: Use of multivitamin supplements has been associated with lower incidence of colorectal cancer (CRC). However, its influence on CRC survival remains unknown. METHODS: Among 2424 patients with stage I-III CRC who provided detailed information about multivitamin supplements in the Nurses' Health Study and Health Professionals Follow-up Study, the authors calculated multivariable hazard ratios (HRs) of multivitamin supplements for all-cause and CRC-specific mortality according to post-diagnostic use and dose of multivitamin supplements. RESULTS: During a median follow-up of 11 years, the authors documented 1512 deaths, among which 343 were of CRC. Compared to non-users, post-diagnostic users of multivitamin supplements at a dose of 3-5 tablets/week had lower CRC-specific mortality (HR, 0.55; 95% confidence interval [CI], 0.36-0.83, p = .005), and post-diagnostic users at doses of 3-5 and 6-9 tablets/week had lower all-cause mortality (HR, 0.81; 95% CI, 0.67-0.99, p = .04; HR, 0.79; 95% CI, 0.70-0.88), p < .001). The dose-response analysis showed a curvilinear relationship for both CRC-specific (pnonlinearity < .001) and all-cause mortality (pnonlinearity = .004), with the maximum risk reduction observed at 3-5 tablets/week and no further reduction at higher doses. Compared to non-users in both pre- and post-diagnosis periods, new post-diagnostic users at dose of <10 tablets/week had a lower all-cause mortality (HR, 0.81; 95% CI, 0.71-0.94, p = .005), whereas new users at a dose of ≥10 tablets/week (HR, 1.58; 95% CI, 1.07-2.33) and discontinued users (HR, 1.35; 95% CI, 1.14-1.59) had a higher risk of mortality. CONCLUSIONS: Use of multivitamin supplements at a moderate dose after a diagnosis of nonmetastatic CRC is associated with lower CRC-specific and overall mortality, whereas a high dose (≥10 tablets/week) use is associated with higher CRC-specific mortality.
Asunto(s)
Neoplasias Colorrectales , Suplementos Dietéticos , Vitaminas , Humanos , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/diagnóstico , Femenino , Vitaminas/administración & dosificación , Estudios Prospectivos , Masculino , Persona de Mediana Edad , Anciano , Adulto , Estudios de Seguimiento , Modelos de Riesgos ProporcionalesRESUMEN
BACKGROUND & AIMS: This study aimed to estimate the prevalence of liver steatosis and fibrosis in the general population and populations with potential risk factors in China, so as to inform policies for the screening and management of fatty liver disease and liver fibrosis in general and high-risk populations. METHODS: This cross-sectional, population-based, nationwide study was based on the database of the largest health check-up chain in China. Adults from 30 provinces who underwent a check-up between 2017 and 2022 were included. Steatosis and fibrosis were assessed and graded by transient elastography. Overall and stratified prevalence was estimated among the general population and various subpopulations with demographic, cardiovascular, and chronic liver disease risk factors. A mixed effect regression model was used to examine predictors independently associated with steatosis and fibrosis. RESULTS: In 5,757,335 participants, the prevalence of steatosis, severe steatosis, advanced fibrosis, and cirrhosis was 44.39%, 10.57%, 2.85%, and 0.87%, respectively. Participants who were male, with obesity, diabetes, hypertension, dyslipidemia, metabolic syndrome, or elevated alanine aminotransferase or aspartate aminotransferase had a significantly higher prevalence of all grades of steatosis and fibrosis, and those with fatty liver, decreased albumin or platelet count, and hepatitis B virus infection also had a significantly higher prevalence of fibrosis than their healthy counterparts. Most cardiovascular and chronic liver disease risk factors were independent predictors for steatosis and fibrosis, except for dyslipidemia for fibrosis. CONCLUSIONS: A substantial burden of liver steatosis and fibrosis was found in China. Our study provides evidence for shaping future pathways for screening and risk stratification of liver steatosis and fibrosis in the general population. The findings of this study highlight that fatty liver and liver fibrosis should be included in disease management programs as targets for screening and regular monitoring in high-risk populations, especially in those with diabetes.
Asunto(s)
Diabetes Mellitus , Dislipidemias , Diagnóstico por Imagen de Elasticidad , Enfermedad del Hígado Graso no Alcohólico , Humanos , Adulto , Masculino , Femenino , Prevalencia , Estudios Transversales , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/epidemiología , Cirrosis Hepática/etiología , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/epidemiología , China/epidemiología , Dislipidemias/epidemiología , Hígado/patologíaRESUMEN
BACKGROUND AND AIMS: China is an endemic area for hepatitis E virus (HEV) infection. Estimating the prevalence and incidence of HEV infection in China plays a pivotal role in informing public health policies to prevent and control hepatitis E. This study aimed to investigate the prevalence of anti-HEV IgG and incidence of HEV seroconversion in China. METHODS: This study was based on the Meinian health check-up database in China. Participants who underwent testing for anti-HEV IgG at check-up centers in 24 provinces between 2017 and 2022 were included. In the cross-sectional analyses, overall prevalence and stratified prevalence in subpopulations with various characteristics were estimated and standardized according to the 2020 census of the Chinese population. In the longitudinal analyses, the occurrence of anti-HEV IgG positivity during the follow-up was defined as an incident HEV seroconversion. Overall and stratified incidence rates were estimated and expressed as per 100 person-years. Poisson regression was used to explore risk factors associated with HEV seroconversion. RESULTS: A total of 85,238 and 11,154 participants were included in the cross-sectional and longitudinal analyses, respectively. The prevalence of anti-HEV IgG in the general population was 18.02%. During a median follow-up of 1.2 years, the incidence rate of HEV seroconversion was 1.79 per 100 person-years. Age ≥60 years, low socioeconomic status, living in coastal areas, living in areas with high drainage density, and living in areas with high anti-HEV IgG prevalence were independent risk factors for HEV seroconversion. CONCLUSIONS: Our findings would help inform policymaking for hepatitis E prevention and control in China as well as in other endemic regions of the world.
RESUMEN
BACKGROUND: As a pivotal pathway of programmed cell death, necroptosis significantly contributes to the pathogenesis of respiratory disorders. However, its role in asthma is not yet fully elucidated. Therefore, this study aimed to identify markers associated with necroptosis, evaluate their functions in asthma, and explore potential therapeutic agents targeting necroptosis for the management of asthma. METHODS: Firstly, machine learning algorithms, including Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest, and Support Vector Machine-Recursive Feature Elimination (SVM-RFE), were utilized to identify necroptosis-related differentially expressed genes (NRDEGs) in asthma patients compared to healthy controls. Concurrently, the expression of NRDEGs was validated using external datasets, Western blot, and quantitative real-time polymerase chain reaction (qPCR). Secondly, the clinical relevance of NRDEGs was assessed through Receiver Operating Characteristic (ROC) curve analysis and correlation with clinical indicators. Thirdly, the relationship between NRDEGs and pulmonary immune cell infiltration, as well as the signaling interactions between different cells types, were analyzed through immune infiltration and single-cell analysis. Fourthly, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA), were conducted to elucidate the functional roles of NRDEGs. Finally, compounds targeting NRDEGs were screened, and their binding affinities were evaluated using molecular docking studies. RESULTS: In asthma, necroptosis is activated, leading to the identification of four NRDEGs: NLRP3, PYCARD, ALOX15, and VDAC3. Among these, NLRP3, PYCARD, and ALOX15 are upregulated, whereas VDAC3 is downregulated in asthma. Comprehensive clinical evaluations indicated that NRDEGs hold diagnostic value for asthma. Specifically, NLRP3 was inversely correlated with forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), while VDAC3 showed an inverse correlation with sputum neutrophils. Conversely, ALOX15 expression was positively correlated with fractional exhaled nitric oxide (FeNO) levels, as well as sputum eosinophils, blood eosinophils, and blood IgE levels. Subsequent immune infiltration analysis revealed associations between NRDEGs and activated dendritic cells, mast cells, and eosinophils. Single-cell RNA sequencing (scRNA-seq) further confirmed the communication signals between myeloid dendritic cells, fibroblasts, neutrophils, and helper T cells, predominantly related to fibrosis and immune-inflammatory responses. Pathway enrichment analysis demonstrated that NRDEGs are involved in ribosomal function, oxidative phosphorylation, and fatty acid metabolism. Finally, resveratrol and triptonide were identified as potential therapeutic agents targeting the proteins encoded by NRDEGs for asthma treatment. CONCLUSIONS: The necroptosis pathway is activated in asthma, with NRDEGs-namely PYCARD, NLRP3, ALOX15, and VDAC3-correlated with declines in lung function and airway inflammation. These genes serve as reliable predictors of asthma risk and are involved in the regulation of the immune-inflammatory microenvironment. Resveratrol and triptolide have been identified as promising therapeutic candidates due to their potential to target the proteins encoded by these genes.
RESUMEN
Biomass-derived materials generally exhibit uniform and highly-stable hierarchical porous structures that can hardly be achieved by conventional chemical synthesis and artificial design. When used as electrodes for rechargeable batteries, these structural and compositional advantages often endow the batteries with superior electrochemical performances. This review systematically introduces the innate merits of biomass-derived materials and their applications as the electrode for advanced rechargeable batteries, including lithium-ion batteries, sodium-ion batteries, potassium-ion batteries, and metal-sulfur batteries. In addition, biomass-derived materials as catalyst supports for metal-air batteries, fuel cells, and redox-flow batteries are also included. The major challenges for specific batteries and the strategies for utilizing biomass-derived materials are detailly introduced. Finally, the future development of biomass-derived materials for advanced rechargeable batteries is prospected. This review aims to promote the development of biomass-derived materials in the field of energy storage and provides effective suggestions for building advanced rechargeable batteries.
RESUMEN
BACKGROUND: Triple-negative breast cancer (TNBC) is a recurrent, heterogeneous, and invasive form of breast cancer. The treatment of TNBC patients with paclitaxel and fluorouracil in a sequential manner has shown promising outcomes. However, it is challenging to deliver these chemotherapeutic agents sequentially to TNBC tumors. We aim to explore a precision therapy strategy for TNBC through the sequential delivery of paclitaxel and fluorouracil. METHODS: We developed a dual chemo-loaded aptamer with redox-sensitive caged paclitaxel for rapid release and non-cleavable caged fluorouracil for slow release. The binding affinity to the target protein was validated using Enzyme-linked oligonucleotide assays and Surface plasmon resonance assays. The targeting and internalization abilities into tumors were confirmed using Flow cytometry assays and Confocal microscopy assays. The inhibitory effects on TNBC progression were evaluated by pharmacological studies in vitro and in vivo. RESULTS: Various redox-responsive aptamer-paclitaxel conjugates were synthesized. Among them, AS1411-paclitaxel conjugate with a thioether linker (ASP) exhibited high anti-proliferation ability against TNBC cells, and its targeting ability was further improved through fluorouracil modification. The fluorouracil modified AS1411-paclitaxel conjugate with a thioether linker (FASP) exhibited effective targeting of TNBC cells and significantly improved the inhibitory effects on TNBC progression in vitro and in vivo. CONCLUSIONS: This study successfully developed fluorouracil-modified AS1411-paclitaxel conjugates with a thioether linker for targeted combination chemotherapy in TNBC. These conjugates demonstrated efficient recognition of TNBC cells, enabling targeted delivery and controlled release of paclitaxel and fluorouracil. This approach resulted in synergistic antitumor effects and reduced toxicity in vivo. However, challenges related to stability, immunogenicity, and scalability need to be further investigated for future translational applications.