Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Fish Dis ; 46(12): 1425-1437, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37705253

RESUMEN

This study aimed to investigate the relationship between seasonal variations, water parameters and the prevalence of Vibriosis in Gilthead seabream. A total of 160 Gilthead seabream fish were sampled over the course of 1 year from private earthen pond farms in the Suez Canal area and examined for abnormalities and internal lesions. Vibrio alginolyticus, the causative agent of Vibriosis, was isolated and characterized from the sampled Gilthead seabream fish. The study revealed a significant correlation between different seasons and the prevalence of V. alginolyticus, with lower occurrence during autumn. Analysis of water parameters showed that toxic ammonia concentration was not effective in distinguishing between positive and negative cases of V. alginolyticus. Dissolved oxygen showed weak predictive ability for the occurrence of V. alginolyticus, while temperature demonstrated moderate potential as a predictor of its prevalence. pH values, organic matter concentrations and salinity showed no significant association with the occurrence of V. alginolyticus. Experimental challenges highlighted the vulnerability of Gilthead seabream to V. alginolyticus and emphasized the impact of environmental factors, such as pH and toxic ammonia, on their mortality and survival. The study emphasizes the importance of considering seasonal changes and water quality parameters in managing V. alginolyticus in mariculture. It underscores the need for careful monitoring and control of environmental factors to ensure the health and well-being of cultured fish populations. The findings contribute to our understanding of Vibriosis management and provide valuable insights for developing effective strategies in the aquaculture industry.


Asunto(s)
Enfermedades de los Peces , Dorada , Vibriosis , Animales , Vibrio alginolyticus , Estaciones del Año , Amoníaco , Enfermedades de los Peces/epidemiología , Vibriosis/epidemiología , Vibriosis/veterinaria , Factores de Riesgo
2.
Dis Aquat Organ ; 143: 57-67, 2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33570040

RESUMEN

The present study aimed to diagnose infectious myonecrosis virus (IMNV) and infectious hypodermal and hematopoietic necrosis virus (IHHNV) among cultured penaeid shrimp (Penaeus semisulcatus, n = 120) collected from private farms in 2 Egyptian provinces (Damietta and North Sinai) along the Mediterranean coast. The collected shrimp were subjected to clinical examination, histopathology, molecular characterization, and phylogenetic analysis. Most of the shrimp infected with IMNV showed a distinctive appearance resembling cooked shrimp and white necrosis on distal abdominal segments and tail fans. Simultaneously, IHHNV-infected cases displayed opaque abdominal muscles, white milky to buff mottling on the shell, and a pathognomonic runt-deformity syndrome. Histopathological examination of infected specimens revealed muscular edema, hemocyte infiltration, deformities, Zenker's necrosis, and eosinophilic intra-nuclear inclusion bodies (Cowdry type A). PCR results gave predictable amplicon sizes of 139 and 81 bp and confirmed the presence of IMNV and IHHNV with a total prevalence of 37.5 and 25%, respectively. A homology search by BLAST analysis showed that the retrieved isolates putatively belonged to IMNV and IHHNV based on 96.3 to 97% nucleotide identity to the corresponding open reading frame gene of each virus. The phylogenetic analysis clearly showed genetic similarity and cross-lineage between our isolates and other isolates from Egypt, the USA, Brazil, Indonesia, China, Korea, Taiwan, and Ecuador. In conclusion, gross inspection and histopathology may aid in the diagnosis of viral diseases; however, molecular tools are indispensable for confirming a possible infection. The current study recommends strict regulations during live shrimp transportation and implementing health control certificates over all imports and exports, especially in developing countries, including Egypt.


Asunto(s)
Densovirinae , Penaeidae , Animales , Brasil , China , Ecuador , Egipto/epidemiología , Indonesia , Filogenia , República de Corea
3.
Fish Shellfish Immunol ; 107(Pt A): 118-128, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32961293

RESUMEN

Biofloc technology is increasingly becoming the most promising aquaculture tool especially in places where water is scarce and the land is very expensive. The dynamics of water quality, as well as plankton and microbial abundance, are collectively necessary for successful fish farming. The prospective use of jaggery as a potential carbon source and its influence on water quality, growth performance, innate immunity, serum bactericidal capacity, and disease resistance to Aeromonas hydrophila was investigated in Oreochromis niloticus. A completely randomized design was used in triplicates, where the control group was reared in a water system with no carbon source, while T1, T2, and T3 groups were raised in biofloc systems at C:N ratios of C:N12, C:N15, and C:N20, respectively. Water specimens were collected daily and fortnightly, while blood, serum, and head kidneys were collected at 75 days of experimental period for further analysis. TAN, nitrite, and ammonia values were considerably reduced, while the TSS values elevated significantly in all treated groups compared to the control. Jaggery-based biofloc system (JB-BFT) has a pronounced effect on hematological and growth performance parameters rather than control. Similarly, serum antioxidants, lysozyme, protease, antiprotease and bactericidal capacity were significantly increased (p < 0.05) in the treated groups in a dose-dependent manner. LYZ, TNF-α, and IL-1ß genes were upregulated in proportion to C:N ratios with the highest fold in C:N20. Furthermore, fish treated with JB-BFT presented lower cumulative mortalities and better relative levels of production (RLP) after experimental challenge with A. hydrophila compared to control. In conclusion, JB-BFT has a robust influence on Nile tilapia (O. niloticus) innate immunity through favorable innovation of various immune-cells and enzymes as well as upregulating the expression levels of immune-related genes. This study offers jaggery as a new carbon source with unique properties that satisfy all considerations of biofloc technology in an eco-friendly manner.


Asunto(s)
Carbono/análisis , Cíclidos/inmunología , Resistencia a la Enfermedad , Enfermedades de los Peces/inmunología , Nitrógeno/análisis , Extractos Vegetales/administración & dosificación , Calidad del Agua , Aeromonas hydrophila/fisiología , Animales , Acuicultura/instrumentación , Cíclidos/genética , Cíclidos/crecimiento & desarrollo , Resistencia a la Enfermedad/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Tecnología
4.
Microb Pathog ; 121: 1-8, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29673977

RESUMEN

The present study was investigating the clinical pictures, prevalence, as well as the ecological conditions associated with Pseudomonas anguilliseptica outbreaks in four cultured seabream, Sparus aurata farms at different localities in Egypt during winter of 2016. The phenotypic and genotypic patterns of Pseudomonas isolates were investigated. The existence of intraspecific heterogeneity among different isolates was analyzed using Restriction Fragment Length Polymorphism (RFLP) technique. Attempts on disease control using antibiogram or dietary supplement were also considered. To achieve these goals, various commercial antibiotic discs were analyzed against Ps. anguilliseptica isolates using the disc diffusion method. Additionally, the impact of one-month dietary incorporation with 3% garlic extract or 0.5% potassium diformate on S. aurata viability and response for prolonged bathing treatment with florfenicol was evaluated following challenge with the virulent strain of Ps. anguilliseptica. Most of the naturally infected fish displayed spiral-swimming behavior with no obvious external lesions. The prevalence of infections in the four investigated farms (F1, F2, F3, and F4) were 44.9, 69.04, 67.72, and 83.4%, respectively. Water analysis revealed a significant variation in total hardness, pH, dissolved oxygen (D.O), ammonia and salinity among different localities. All isolates were rather uniform in most of the biochemical characteristics and were identical on the basis of RFLP analysis. The analyses of PAF-PAR gene pointed out specific amplification bands of 439 bp length. The antibiogram revealed a potential activity of florfenicol, ciprofloxacin, nitrofurantoin, and oxytetracycline against all isolates. Experimentally challenged fish fed on garlic extract or potassium diformate presented lower mortality and better therapeutic response to florfenicol than those fed on a normal basal diet. In conclusion, Ps. anguilliseptica is a prevalent pathogen among cultured seabream where dietary inclusion of 3% garlic extract or 0.5% potassium diformate seemed to improve seabream health status and subsequently, increase the efficacy of the treatment with the selective antibiotic.


Asunto(s)
Alimentación Animal , Enfermedades de los Peces/epidemiología , Infecciones por Pseudomonas/epidemiología , Dorada/microbiología , Animales , Antibacterianos/farmacología , Acuicultura , Ciprofloxacina/farmacología , Suplementos Dietéticos , Egipto , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Formiatos/farmacología , Ajo , Concentración de Iones de Hidrógeno , Peso Molecular , Nitrofurantoína/farmacología , Extractos Vegetales/farmacología , Polimorfismo de Longitud del Fragmento de Restricción , Prevalencia , Pseudomonas/clasificación , Pseudomonas/efectos de los fármacos , Infecciones por Pseudomonas/prevención & control , Infecciones por Pseudomonas/veterinaria , Tianfenicol/análogos & derivados , Tianfenicol/farmacología
5.
Front Cell Infect Microbiol ; 12: 1068000, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36683696

RESUMEN

Tenacibaculosis occurs due to the marine bacterial pathogen Tenacibaculum maritimum. This ulcerative disease causes high mortalities for various marine fish species worldwide. Several external clinical signs can arise, including mouth erosion, epidermal ulcers, fin necrosis, and tail rot. Research in the last 15 years has advanced knowledge on the traits and pathogenesis mechanisms of T. maritimum. Consequently, significant progress has been made in defining the complex host-pathogen relationship. Nevertheless, tenacibaculosis pathogenesis is not yet fully understood. Continued research is urgently needed, as demonstrated by recent reports on the re-emerging nature of tenacibaculosis in salmon farms globally. Current sanitary conditions compromise the development of effective alternatives to antibiotics, in addition to hindering potential preventive measures against tenacibaculosis. The present review compiles knowledge of T. maritimum reported after the 2006 review by Avendaño-Herrera and colleagues. Essential aspects are emphasized, including antigenic and genomic characterizations and molecular diagnostic procedures. Further summarized are the epidemiological foundations of the T. maritimum population structure and elucidations as to the virulence mechanisms of pathogenic isolates, as found using biological, microbiological, and genomic techniques. This comprehensive source of reference will undoubtable serve in tenacibaculosis prevention and control within the marine fish farming industry. Lastly, knowledge gaps and valuable research areas are indicated as potential guidance for future studies.


Asunto(s)
Enfermedades de los Peces , Tenacibaculum , Animales , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/microbiología , Tenacibaculum/genética , Peces , Fenotipo
6.
Infect Drug Resist ; 15: 2167-2185, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498633

RESUMEN

Background: Bacillus cereus is a common food poisoning pathogen in humans. This study aimed to investigate the prevalence, molecular typing, antibiogram profile, pathogenicity, dissemination of virulence and antibiotic resistance genes associated with natural B. cereus infection among Mugil seheli. Methods: Consequently, 120 M. seheli (40 healthy and 80 diseased) were obtained from private fish farms in Port-said Governorate, Egypt. Afterward, samples were processed for clinical, post-mortem, and bacteriological examinations. The recovered isolates were tested for antimicrobial susceptibility, phenotypic assessment of virulence factors, pathogeneicity, and PCR-based detection of virulence and antibiotic resistance genes. Results: B. cereus was isolated from 30 (25%) examined fish; the highest prevalence was noticed in the liver (50%). The phylogenetic and sequence analyses of the gyrB gene revealed that the tested B. cereus isolate displayed a high genetic similarity with other B. cereus strains from different origins. All the recovered B. cereus isolates (n =60, 100%) exhibited ß-hemolytic and lecithinase activities, while 90% (54/60) of the tested isolates were biofilm producers. Using PCR, the tested B. cereus isolates harbor nhe, hbl, cytK, pc-plc, and ces virulence genes with prevalence rates of 91.6%, 86.6%, 83.4%, 50%, and 33.4%, respectively. Moreover, 40% (24/60) of the tested B. cereus isolates were multidrug-resistant (MDR) to six antimicrobial classes and carried the bla1, bla2, tetA, and ermA genes. The experimentally infected fish with B. cereus showed variable mortality in direct proportion to the inoculated doses. Conclusion: As far as we know, this is the first report that emphasized the existence of MDR B. cereus in M. seheli that reflects a threat to the public health and the aquaculture sector. Newly emerging MDR B. cereus in M. seheli commonly carried virulence genes nhe, hbl, cytK, and pc-plc, as well as resistance genes bla1, bla2, tetA, and ermA.

7.
Infect Drug Resist ; 14: 1169-1184, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790587

RESUMEN

In late 2019, a new virulent coronavirus (CoV) emerged in Wuhan, China and was named as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This virus spread rapidly, causing the coronavirus disease-2019 (COVID-19) pandemic. Bacillus Calmette-Guérin (BCG) is a live attenuated tuberculosis (TB) vaccine, associated with induction of non-specific cross-protection against unrelated infections. This protection is a memory-like response in innate immune cells (trained immunity), which is caused by epigenetic reprogramming via histone modification in the regulatory elements of specific genes in monocytes. COVID-19 related epidemiological studies showed an inverse relationship between national BCG vaccination policies and COVID-19 incidence and death, suggesting that BCG may induce trained immunity that could confer some protection against SARS-CoV-2. As this pandemic has put most of Earth's population under quarantine, repurposing of the old, well-characterized BCG may ensure some protection against COVID-19. This review focuses on BCG-related cross-protection and acquisition of trained immunity, as well as the correlation between BCG vaccination and COVID-19 incidence and mortality.

8.
Pathogens ; 9(3)2020 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-32235800

RESUMEN

Motile Aeromonas septicemia is a common bacterial disease that affects Oreochromis niloticus and causes tremendous economic losses globally. In order to investigate the prevalence, molecular typing, antibiogram and the biodiversity of Aeromonas hydrophila complex, a total of 250 tilapia (Oreochromis niloticus) were collected randomly from 10 private tilapia farms (25 fish/farm) at El-Sharkia Governorate, Egypt. The collected fish were subjected to clinical and bacteriological examinations. The majority of infected fish displayed ulcerative necrosis, exophthalmia, and internal signs of hemorrhagic septicemia. The prevalence of A. hydrophia complex was 13.2%, where the liver was the most predominant affected organ (54.1%). Polymerase chain reaction (PCR) was used to verify the identification of A. hydrophila complex using one set of primers targeting gyrB as well as the detection of virulent genes (aerA, alt, and ahp). All isolates were positive for the gyrB-conserved gene and harbored aerA and alt virulence genes. However, none of those isolates were positive for the ahp gene. The antimicrobial sensitivity was carried out, where the recovered strains were completely sensitive to ciprofloxacin and highly resistant to amoxicillin. All retrieved strains showed the same phenotypic characteristics and were identical based on the restriction fragment length polymorphism (RFLP). Experimentally challenged fish presented a high mortality rate (76.67%) and showed typical signs as in naturally infected ones. In conclusion, the synergism of phenotypic and genotypic characterization is a valuable epidemiological tool for the diagnosis of A. hydrophila complex. RFLP is a fundamental tool for monitoring the biodiversity among all retrieved strains of A. hydrophia.

9.
Sci Rep ; 10(1): 15961, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994450

RESUMEN

This study aimed to investigate the prevalence, antibiogram of Pseudomonas aeruginosa (P. aeruginosa), and the distribution of virulence genes (oprL, exoS, phzM, and toxA) and the antibiotic-resistance genes (blaTEM, tetA, and blaCTX-M). A total of 285 fish (165 Oreochromis niloticus and 120 Clarias gariepinus) were collected randomly from private fish farms in Ismailia Governorate, Egypt. The collected specimens were examined bacteriologically. P. aeruginosa was isolated from 90 examined fish (31.57%), and the liver was the most prominent infected organ. The antibiogram of the isolated strains was determined using a disc diffusion method, where the tested strains exhibited multi-drug resistance (MDR) to amoxicillin, cefotaxime, tetracycline, and gentamicin. The PCR results revealed that all the examined strains harbored (oprL and toxA) virulence genes, while only 22.2% were positive for the phzM gene. On the contrary, none of the tested strains were positive for the exoS gene. Concerning the distribution of the antibiotic resistance genes, the examined strains harbored blaTEM, blaCTX-M, and tetA genes with a total prevalence of 83.3%, 77.7%, and 75.6%, respectively. Experimentally infected fish with P. aeruginosa displayed high mortalities in direct proportion to the encoded virulence genes and showed similar signs of septicemia found in the naturally infected one. In conclusion, P. aeruginosa is a major pathogen of O. niloticus and C. gariepinus. oprL and toxA genes are the most predominant virulence genes associated with P. aeruginosa infection. The blaCTX-M, blaTEM, and tetA genes are the main antibiotic-resistance genes that induce resistance patterns to cefotaxime, amoxicillin, and tetracycline, highlighting MDR P. aeruginosa strains of potential public health concern.


Asunto(s)
Resistencia a Múltiples Medicamentos/genética , Peces/genética , Peces/microbiología , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Egipto , Genes Bacterianos/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Infecciones por Pseudomonas/genética , Pseudomonas aeruginosa/genética , Virulencia/genética , Factores de Virulencia/genética
10.
Infect Drug Resist ; 13: 3255-3265, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33061472

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a major human pathogen and a historically emergent zoonotic pathogen with public health and veterinary importance. In humans, MRSA commonly causes severe infectious diseases, including food poisoning, pyogenic endocarditis, suppurative pneumonia, otitis media, osteomyelitis, and pyogenic infections of the skin, soft tissues. In the horse, MRSA could cause a localized purulent infection and botryomycosis; in cattle and ewe, localized pyogenic infection and severe acute mastitis with marked toxemia; in sheep, abscess disease resembles caseous lymphadenitis caused by anaerobic strains; in dogs and cats, pustular dermatitis and food poisoning; in pig, exudative epidermatitis "greasy pig disease; in birds, MRSA causes bumble-foot. The methicillin resistance could be determined by PCR-based detection of the mecA gene as well as resistance to cefoxitin. In Egypt, MRSA is one of the important occasions of subclinical and clinical bovine mastitis, and the prevalence of MRSA varies by geographical region. In this review, we are trying to illustrate variable data about the host susceptibility, diseases, epidemiology, virulence factors, antibiotic resistance, treatment, and control of MRSA infection.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda