Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Chem Chem Phys ; 22(42): 24561-24571, 2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33094778

RESUMEN

We report a study on adsorption and coadsorption of H2 and D2 in FAU, MFI and CHA pure silica zeolites having different pore sizes and shapes. Adsorption capacities, selectivities, enthalpies and entropies are determined by combining experiments and GCMC simulations. We show that the force fields available in the literature cannot predict the adsorption equilibria below 77 K with sufficient accuracy. Here we propose a new force field adjusted by using our experimental data obtained for the pure silica MFI zeolite at 65 K and 77 K. With this new force field, it is possible to predict the adsorption and coadsorption equilibria on the three zeolite structures in a temperature range between 47 and 77 K with satisfactory precision. We corroborate that the step appearing on the single adsorption isotherms in CHA is the result of a molecular rearrangement of the adsorbed phase due to the apparition of a new adsorption site characterized by weaker interactions of H2 with the adsorbent. We conclude that the quantum sieving of H2 and D2 not only depends on the pore size but also on the pore shape, in particular, at high loading when the confinement effects become important.

2.
Chem Commun (Camb) ; 56(41): 5564-5566, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32342087

RESUMEN

Coadsorption experiments reveal an unexpected increase of the D2/H2 selectivity with loading in pure silica chabazite at 47 K. This effect is correlated with the appearance of a step in the adsorption isotherms of H2 and D2. Grand canonical Monte Carlo simulations show that this phenomenon is related to a molecular rearrangement of the adsorbed phase induced by its strong confinement. In the case of a H2 and D2 mixture, this rearrangement favors the adsorption of D2 having a smaller size due to quantum effects.

3.
Chem Commun (Camb) ; (20): 2340-1, 2002 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-12430430

RESUMEN

A selective removal of nitrogen compounds from gasoils is proposed, using a recyclable sorbent capable of forming charge-transfer complexes; the selective elimination of nitrogen compounds strongly improves the hydrodesulfurization (HDS) of denitrogenated feed.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda