Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38928326

RESUMEN

Diagnostic markers are desperately needed for the early detection of pancreatic ductal adenocarcinoma (PDA). We describe sets of markers expressed in temporal order in mouse models during pancreatitis, PDA initiation and progression. Cell type specificity and the differential expression of PDA markers were identified by screening single cell (sc) RNAseq from tumor samples of a mouse model for PDA (KIC) at early and late stages of PDA progression compared to that of a normal pancreas. Candidate genes were identified from three sources: (1) an unsupervised screening of the genes preferentially expressed in mouse PDA tumors; (2) signaling pathways that drive PDA, including the Ras pathway, calcium signaling, and known cancer genes, or genes encoding proteins that were identified by differential mass spectrometry (MS) of mouse tumors and conditioned media from human cancer cell lines; and (3) genes whose expression is associated with poor or better prognoses (PAAD, oncolnc.org). The developmental progression of PDA was detected in the temporal order of gene expression in the cancer cells of the KIC mice. The earliest diagnostic markers were expressed in epithelial cancer cells in early-stage, but not late-stage, PDA tumors. Other early markers were expressed in the epithelium of both early- and late-state PDA tumors. Markers that were expressed somewhat later were first elevated in the epithelial cancer cells of the late-stage tumors, then in both epithelial and mesenchymal cells, or only in mesenchymal cells. Stromal markers were differentially expressed in early- and/or late-stage PDA neoplasia in fibroblast and hematopoietic cells (lymphocytes and/or macrophages) or broadly expressed in cancer and many stromal cell types. Pancreatitis is a risk factor for PDA in humans. Mouse models of pancreatitis, including caerulein treatment and the acinar-specific homozygous deletion of differentiation transcription factors (dTFs), were screened for the early expression of all PDA markers identified in the KIC neoplasia. Prognostic markers associated with a more rapid decline were identified and showed differential and cell-type-specific expression in PDA, predominately in late-stage epithelial and/or mesenchymal cancer cells. Select markers were validated by immunohistochemistry in mouse and human samples of a normal pancreas and those with early- and late-stage PDA. In total, we present 2165 individual diagnostic and prognostic markers for disease progression to be tested in humans from pancreatitis to late-stage PDA.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patología , Pancreatitis/metabolismo , Pancreatitis/genética , Pancreatitis/patología , Pancreatitis/diagnóstico , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Humanos , Pronóstico , Regulación Neoplásica de la Expresión Génica , Modelos Animales de Enfermedad , Línea Celular Tumoral , Progresión de la Enfermedad
2.
Nature ; 554(7693): 470-472, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32094929
3.
Nature ; 554(7693): 470-472, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29469130
4.
Genes Dev ; 25(16): 1674-9, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21852532

RESUMEN

We have determined the cistrome and transcriptome for the nuclear receptor liver receptor homolog-1 (LRH-1) in exocrine pancreas. Chromatin immunoprecipitation (ChIP)-seq and RNA-seq analyses reveal that LRH-1 directly induces expression of genes encoding digestive enzymes and secretory and mitochondrial proteins. LRH-1 cooperates with the pancreas transcription factor 1-L complex (PTF1-L) in regulating exocrine pancreas-specific gene expression. Elimination of LRH-1 in adult mice reduced the concentration of several lipases and proteases in pancreatic fluid and impaired pancreatic fluid secretion in response to cholecystokinin. Thus, LRH-1 is a key regulator of the exocrine pancreas-specific transcriptional network required for the production and secretion of pancreatic fluid.


Asunto(s)
Redes Reguladoras de Genes , Páncreas Exocrino/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Factores de Transcripción/genética , Animales , Antineoplásicos Hormonales/farmacología , Secuencia de Bases , Western Blotting , Inmunoprecipitación de Cromatina , Regulación hacia Abajo/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Humanos , Lipasa/genética , Lipasa/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Páncreas Exocrino/efectos de los fármacos , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Tamoxifeno/farmacología , Factores de Transcripción/metabolismo
5.
Development ; 141(22): 4385-94, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25371369

RESUMEN

The timing and gene regulatory logic of organ-fate commitment from within the posterior foregut of the mammalian endoderm is largely unexplored. Transient misexpression of a presumed pancreatic-commitment transcription factor, Ptf1a, in embryonic mouse endoderm (Ptf1a(EDD)) dramatically expanded the pancreatic gene regulatory network within the foregut. Ptf1a(EDD) temporarily suppressed Sox2 broadly over the anterior endoderm. Pancreas-proximal organ territories underwent full tissue conversion. Early-stage Ptf1a(EDD) rapidly expanded the endogenous endodermal Pdx1-positive domain and recruited other pancreas-fate-instructive genes, thereby spatially enlarging the potential for pancreatic multipotency. Early Ptf1a(EDD) converted essentially the entire glandular stomach, rostral duodenum and extrahepatic biliary system to pancreas, with formation of many endocrine cell clusters of the type found in normal islets of Langerhans. Sliding the Ptf1a(EDD) expression window through embryogenesis revealed differential temporal competencies for stomach-pancreas respecification. The response to later-stage Ptf1a(EDD) changed radically towards unipotent, acinar-restricted conversion. We provide strong evidence, beyond previous Ptf1a inactivation or misexpression experiments in frog embryos, for spatiotemporally context-dependent activity of Ptf1a as a potent gain-of-function trigger of pro-pancreatic commitment.


Asunto(s)
Endodermo/embriología , Tracto Gastrointestinal/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Organogénesis/fisiología , Páncreas/embriología , Factores de Transcripción/metabolismo , Animales , Endodermo/metabolismo , Técnica del Anticuerpo Fluorescente , Tracto Gastrointestinal/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Técnicas Histológicas , Ratones , Microscopía Confocal , Organogénesis/genética , Factores de Transcripción SOXB1/metabolismo
6.
Development ; 141(16): 3123-33, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25063451

RESUMEN

The orphan nuclear receptor NR5A2 is necessary for the stem-like properties of the epiblast of the pre-gastrulation embryo and for cellular and physiological homeostasis of endoderm-derived organs postnatally. Using conditional gene inactivation, we show that Nr5a2 also plays crucial regulatory roles during organogenesis. During the formation of the pancreas, Nr5a2 is necessary for the expansion of the nascent pancreatic epithelium, for the subsequent formation of the multipotent progenitor cell (MPC) population that gives rise to pre-acinar cells and bipotent cells with ductal and islet endocrine potential, and for the formation and differentiation of acinar cells. At birth, the NR5A2-deficient pancreas has defects in all three epithelial tissues: a partial loss of endocrine cells, a disrupted ductal tree and a >90% deficit of acini. The acinar defects are due to a combination of fewer MPCs, deficient allocation of those MPCs to pre-acinar fate, disruption of acinar morphogenesis and incomplete acinar cell differentiation. NR5A2 controls these developmental processes directly as well as through regulatory interactions with other pancreatic transcriptional regulators, including PTF1A, MYC, GATA4, FOXA2, RBPJL and MIST1 (BHLHA15). In particular, Nr5a2 and Ptf1a establish mutually reinforcing regulatory interactions and collaborate to control developmentally regulated pancreatic genes by binding to shared transcriptional regulatory regions. At the final stage of acinar cell development, the absence of NR5A2 affects the expression of Ptf1a and its acinar specific partner Rbpjl, so that the few acinar cells that form do not complete differentiation. Nr5a2 controls several temporally distinct stages of pancreatic development that involve regulatory mechanisms relevant to pancreatic oncogenesis and the maintenance of the exocrine phenotype.


Asunto(s)
Células Acinares/citología , Regulación del Desarrollo de la Expresión Génica , Páncreas/embriología , Páncreas/crecimiento & desarrollo , Receptores Citoplasmáticos y Nucleares/fisiología , Células Madre/citología , Animales , Secuencia de Bases , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Masculino , Ratones , Ratones Transgénicos , Mutación , Fenotipo , Receptores Citoplasmáticos y Nucleares/genética , Transgenes
7.
Development ; 139(10): 1744-53, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22461559

RESUMEN

Early pancreatic morphogenesis is characterized by the transformation of an uncommitted pool of pancreatic progenitor cells into a branched pancreatic epithelium that consists of 'tip' and 'trunk' domains. These domains have distinct molecular signatures and differentiate into distinct pancreatic cell lineages. Cells at the branched tips of the epithelium develop into acinar cells, whereas cells in the trunk subcompartment differentiate into endocrine and duct cells. Recent genetic analyses have highlighted the role of key transcriptional regulators in the specification of these subcompartments. Here, we analyzed in mice the role of Notch signaling in the patterning of multipotent pancreatic progenitor cells through mosaic overexpression of a Notch signaling antagonist, dominant-negative mastermind-like 1, resulting in a mixture of wild-type and Notch-suppressed pancreatic progenitor cells. We find that attenuation of Notch signaling has pronounced patterning effects on multipotent pancreatic progenitor cells prior to terminal differentiation. Relative to the wild-type cells, the Notch-suppressed cells lose trunk marker genes and gain expression of tip marker genes. The Notch-suppressed cells subsequently differentiate into acinar cells, whereas duct and endocrine populations are formed predominantly from the wild-type cells. Mechanistically, these observations could be explained by a requirement of Notch for the expression of the trunk determination gene Nkx6.1. This was supported by the finding of direct binding of RBP-jκ to the Nkx6.1 proximal promoter.


Asunto(s)
Páncreas/citología , Receptores Notch/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Citometría de Flujo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Inmunohistoquímica , Ratones , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Notch/genética
8.
Development ; 139(1): 33-45, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22096075

RESUMEN

Neurog3-induced Dll1 expression in pancreatic endocrine progenitors ostensibly activates Hes1 expression via Notch and thereby represses Neurog3 and endocrine differentiation in neighboring cells by lateral inhibition. Here we show in mouse that Dll1 and Hes1 expression deviate during regionalization of early endoderm, and later during early pancreas morphogenesis. At that time, Ptf1a activates Dll1 in multipotent pancreatic progenitor cells (MPCs), and Hes1 expression becomes Dll1 dependent over a brief time window. Moreover, Dll1, Hes1 and Dll1/Hes1 mutant phenotypes diverge during organ regionalization, become congruent at early bud stages, and then diverge again at late bud stages. Persistent pancreatic hypoplasia in Dll1 mutants after eliminating Neurog3 expression and endocrine development, together with reduced proliferation of MPCs in both Dll1 and Hes1 mutants, reveals that the hypoplasia is caused by a growth defect rather than by progenitor depletion. Unexpectedly, we find that Hes1 is required to sustain Ptf1a expression, and in turn Dll1 expression in early MPCs. Our results show that Ptf1a-induced Dll1 expression stimulates MPC proliferation and pancreatic growth by maintaining Hes1 expression and Ptf1a protein levels.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Páncreas/embriología , Células Secretoras de Polipéptido Pancreático/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Bromodesoxiuridina , Proteínas de Unión al Calcio , Inmunoprecipitación de Cromatina , Galactósidos , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Indoles , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Células Madre/citología , Factor de Transcripción HES-1
9.
Gastroenterology ; 143(2): 469-80, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22510200

RESUMEN

BACKGROUND & AIMS: Early embryogenesis involves cell fate decisions that define the body axes and establish pools of progenitor cells. Development does not stop once lineages are specified; cells continue to undergo specific maturation events, and changes in gene expression patterns lead to their unique physiological functions. Secretory pancreatic acinar cells mature postnatally to synthesize large amounts of protein, polarize, and communicate with other cells. The transcription factor MIST1 is expressed by only secretory cells and regulates maturation events. MIST1-deficient acinar cells in mice do not establish apical-basal polarity, properly position zymogen granules, or communicate with adjacent cells, disrupting pancreatic function. We investigated whether MIST1 directly induces and maintains the mature phenotype of acinar cells. METHODS: We analyzed the effects of Cre-mediated expression of Mist1 in adult Mist1-deficient (Mist1(KO)) mice. Pancreatic tissues were collected and analyzed by light and electron microscopy, immunohistochemistry, real-time polymerase chain reaction analysis, and chromatin immunoprecipitation. Primary acini were isolated from mice and analyzed in amylase secretion assays. RESULTS: Induced expression of Mist1 in adult Mist1(KO) mice restored wild-type gene expression patterns in acinar cells. The acinar cells changed phenotypes, establishing apical-basal polarity, increasing the size of zymogen granules, reorganizing the cytoskeletal network, communicating intercellularly (by synthesizing gap junctions), and undergoing exocytosis. CONCLUSIONS: The exocrine pancreas of adult mice can be remodeled by re-expression of the transcription factor MIST1. MIST1 regulates acinar cell maturation and might be used to repair damaged pancreata in patients with pancreatic disorders.


Asunto(s)
Células Acinares/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Páncreas Exocrino/citología , Células Acinares/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Biomarcadores/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Páncreas Exocrino/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal
10.
Nat Genet ; 32(1): 128-34, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12185368

RESUMEN

Pancreas development begins with the formation of buds at specific sites in the embryonic foregut endoderm. We used recombination-based lineage tracing in vivo to show that Ptf1a (also known as PTF1-p48) is expressed at these early stages in the progenitors of pancreatic ducts, exocrine and endocrine cells, rather than being an exocrine-specific gene as previously described. Moreover, inactivation of Ptf1a switches the character of pancreatic progenitors such that their progeny proliferate in and adopt the normal fates of duodenal epithelium, including its stem-cell compartment. Consistent with the proposal that Ptf1a supports the specification of precursors of all three pancreatic cell types, transgene-based expression of Pdx1, a gene essential to pancreas formation, from Ptf1a cis-regulatory sequences restores pancreas tissue to Pdx1-null mice that otherwise lack mature exocrine and endocrine cells because of an early arrest in organogenesis. These experiments provide evidence that Ptf1a expression is specifically connected to the acquisition of pancreatic fate by undifferentiated foregut endoderm.


Asunto(s)
Duodeno/embriología , Regulación de la Expresión Génica , Proteínas de Homeodominio , Páncreas/embriología , Factores de Transcripción/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Linaje de la Célula , Duodeno/citología , Ratones , Páncreas/citología , Transactivadores/metabolismo
11.
PLoS One ; 18(10): e0291512, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37796967

RESUMEN

Proper maintenance of mature cellular phenotypes is essential for stable physiology, suppression of disease states, and resistance to oncogenic transformation. We describe the transcriptional regulatory roles of four key DNA-binding transcription factors (Ptf1a, Nr5a2, Foxa2 and Gata4) that sit at the top of a regulatory hierarchy controlling all aspects of a highly differentiated cell-type-the mature pancreatic acinar cell (PAC). Selective inactivation of Ptf1a, Nr5a2, Foxa2 and Gata4 individually in mouse adult PACs rapidly altered the transcriptome and differentiation status of PACs. The changes most emphatically included transcription of the genes for the secretory digestive enzymes (which conscript more than 90% of acinar cell protein synthesis), a potent anabolic metabolism that provides the energy and materials for protein synthesis, suppressed and properly balanced cellular replication, and susceptibility to transformation by oncogenic KrasG12D. The simultaneous inactivation of Foxa2 and Gata4 caused a greater-than-additive disruption of gene expression and uncovered their collaboration to maintain Ptf1a expression and control PAC replication. A measure of PAC dedifferentiation ranked the effects of the conditional knockouts as Foxa2+Gata4 > Ptf1a > Nr5a2 > Foxa2 > Gata4. Whereas the loss of Ptf1a or Nr5a2 greatly accelerated Kras-mediated transformation of mature acinar cells in vivo, the absence of Foxa2, Gata4, or Foxa2+Gata4 together blocked transformation completely, despite extensive dedifferentiation. A lack of correlation between PAC dedifferentiation and sensitivity to oncogenic KrasG12D negates the simple proposition that the level of differentiation determines acinar cell resistance to transformation.


Asunto(s)
Páncreas Exocrino , Neoplasias Pancreáticas , Ratones , Animales , Células Acinares/metabolismo , Epitelio/metabolismo , Factores de Transcripción/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Fenotipo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
12.
Development ; 136(17): 2945-54, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19641016

RESUMEN

PTF1-J is a trimeric transcription factor complex essential for generating the correct balance of GABAergic and glutamatergic interneurons in multiple regions of the nervous system, including the dorsal horn of the spinal cord and the cerebellum. Although the components of PTF1-J have been identified as the basic helix-loop-helix (bHLH) factor Ptf1a, its heterodimeric E-protein partner, and Rbpj, no neural targets are known for this transcription factor complex. Here we identify the neuronal differentiation gene Neurog2 (Ngn2, Math4A, neurogenin 2) as a direct target of PTF1-J. A Neurog2 dorsal neural tube enhancer localized 3' of the Neurog2 coding sequence was identified that requires a PTF1-J binding site for dorsal activity in mouse and chick neural tube. Gain and loss of Ptf1a function in vivo demonstrate its role in Neurog2 enhancer activity. Furthermore, chromatin immunoprecipitation from neural tube tissue demonstrates that Ptf1a is bound to the Neurog2 enhancer. Thus, Neurog2 expression is directly regulated by the PTF1-J complex, identifying Neurog2 as the first neural target of Ptf1a and revealing a bHLH transcription factor cascade functioning in the specification of GABAergic neurons in the dorsal spinal cord and cerebellum.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Médula Espinal/embriología , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sitios de Unión , Diferenciación Celular/fisiología , Embrión de Pollo , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/genética , Transducción de Señal/fisiología , Médula Espinal/citología , Médula Espinal/metabolismo , Factores de Transcripción/genética , Transcripción Genética
13.
Gastroenterology ; 139(1): 270-80, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20398665

RESUMEN

BACKGROUND & AIMS: The mature pancreatic acinar cell is dedicated to the production of very large amounts of digestive enzymes. The early stages of pancreatic development require the Rbpj form of the trimeric Pancreas Transcription Factor 1 complex (PTF1-J). As acinar development commences, Rbpjl gradually replaces Rbpj; in the mature pancreas, PTF1 contains Rbpjl (PTF1-L). We investigated whether PTF1-L controls the expression of genes that complete the final stage of acinar differentiation. METHODS: We analyzed acinar development and transcription in mice with disrupted Rbpjl (Rbpjl(ko/ko) mice). We performed comprehensive analyses of the messenger RNA population and PTF1 target genes in pancreatic acinar cells from these and wild-type mice. RESULTS: In Rbpjl(ko/ko) mice, acinar differentiation was incomplete and characterized by decreased expression (as much as 99%) of genes that encode digestive enzymes or proteins of regulated exocytosis and mitochondrial metabolism. Whereas PTF1-L bound regulatory sites of genes in normal adult pancreatic cells, the embryonic form (PTF1-J) persisted in the absence of Rbpjl and replaced PTF1-L; the extent of replacement determined gene expression levels. Loss of PTF1-L reduced expression (>2-fold) of only about 50 genes, 90% of which were direct targets of PTF1-L. The magnitude of the effects on individual digestive enzyme genes correlated with the developmental timing of gene activation. Absence of Rbpjl increased pancreatic expression of liver-restricted messenger RNA. CONCLUSIONS: Replacement of Rbpj by Rbpjl in the PTF1 complex drives acinar differentiation by maximizing secretory protein synthesis, stimulating mitochondrial metabolism and cytoplasmic creatine-phosphate energy stores, completing the packaging and secretory apparatus, and maintaining acinar-cell homeostasis.


Asunto(s)
Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/fisiología , Páncreas Exocrino/citología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Hígado/metabolismo , Ratones , Ratones Noqueados , Fenotipo , ARN Mensajero/análisis
14.
J Neurosci ; 29(36): 11139-48, 2009 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-19741120

RESUMEN

Ptf1a, along with an E protein and Rbpj, forms the transcription factor complex PTF1-J that is essential for proper specification of inhibitory neurons in the spinal cord, retina, and cerebellum. Here we show that two highly conserved noncoding genomic regions, a distal 2.3 kb sequence located 13.4 kb 5' and a 12.4 kb sequence located immediately 3' of the Ptf1a coding region, have distinct activity in controlling Ptf1a expression in all of these domains. The 5' 2.3 kb sequence functions as an autoregulatory element and directs reporter gene expression to all Ptf1a domains in the developing nervous system. The autoregulatory activity of this element was demonstrated by binding of the PTF1-J complex in vitro, Ptf1a localization to this genomic region in vivo, and the in vivo requirement of Ptf1a for the activity of the regulatory element in transgenic mice. In contrast, the 12.4 kb 3' regulatory region does not contain any conserved PTF1 sites, and its expression in transgenic mice is independent of Ptf1a. Thus, regulatory information for initiation of Ptf1a expression in the developing nervous system is located within the 12.4 kb sequence 3' of the Ptf1a gene. Together, these results identify multiple transcriptional mechanisms that control Ptf1a levels, one modulating levels by autoregulation through the PTF1-J complex, and the other a Ptf1a-independent mechanism for initial activation.


Asunto(s)
Sistema Nervioso Central/embriología , Sistema Nervioso Central/fisiología , Homeostasis/genética , Neurogénesis/genética , Factores de Transcripción/fisiología , Transcripción Genética/fisiología , Animales , Embrión de Pollo , Retroalimentación Fisiológica/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Transcripción/biosíntesis , Factores de Transcripción/metabolismo
15.
Sci Rep ; 10(1): 20662, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33244070

RESUMEN

PDA is a major cause of US cancer-related deaths. Oncogenic Kras presents in 90% of human PDAs. Kras mutations occur early in pre-neoplastic lesions but are insufficient to cause PDA. Other contributing factors early in disease progression include chronic pancreatitis, alterations in epigenetic regulators, and tumor suppressor gene mutation. GPCRs activate heterotrimeric G-proteins that stimulate intracellular calcium and oncogenic Kras signaling, thereby promoting pancreatitis and progression to PDA. By contrast, Rgs proteins inhibit Gi/q-coupled GPCRs to negatively regulate PDA progression. Rgs16::GFP is expressed in response to caerulein-induced acinar cell dedifferentiation, early neoplasia, and throughout PDA progression. In genetically engineered mouse models of PDA, Rgs16::GFP is useful for pre-clinical rapid in vivo validation of novel chemotherapeutics targeting early lesions in patients following successful resection or at high risk for progressing to PDA. Cultured primary PDA cells express Rgs16::GFP in response to cytotoxic drugs. A histone deacetylase inhibitor, TSA, stimulated Rgs16::GFP expression in PDA primary cells, potentiated gemcitabine and JQ1 cytotoxicity in cell culture, and Gem + TSA + JQ1 inhibited tumor initiation and progression in vivo. Here we establish the use of Rgs16::GFP expression for testing drug combinations in cell culture and validation of best candidates in our rapid in vivo screen.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Células Acinares/patología , Adenocarcinoma/metabolismo , Animales , Calcio/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma Ductal Pancreático/metabolismo , Desdiferenciación Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Ceruletida/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Progresión de la Enfermedad , Proteínas de Unión al GTP/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Ratones , Conductos Pancreáticos/efectos de los fármacos , Conductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatitis/tratamiento farmacológico , Pancreatitis/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas RGS/metabolismo , Transducción de Señal/efectos de los fármacos , Gemcitabina , Neoplasias Pancreáticas
16.
PLoS Biol ; 4(2): e39, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16435884

RESUMEN

Identification of signaling pathways that maintain and promote adult pancreatic islet functions will accelerate our understanding of organogenesis and improve strategies for treating diseases like diabetes mellitus. Previous work has implicated transforming growth factor-beta (TGF-beta) signaling as an important regulator of pancreatic islet development, but has not established whether this signaling pathway is required for essential islet functions in the adult pancreas. Here we describe a conditional system for expressing Smad7, a potent inhibitor of TGF-beta signaling, to identify distinct roles for this pathway in adult and embryonic beta cells. Smad7 expression in Pdx1+ embryonic pancreas cells resulted in striking embryonic beta cell hypoplasia and neonatal lethality. Conditional expression of Smad7 in adult Pdx1+ cells reduced detectable beta cell expression of MafA, menin, and other factors that regulate beta cell function. Reduced pancreatic insulin content and hypoinsulinemia produced overt diabetes that was fully reversed upon resumption of islet TGF-beta signaling. Thus, our studies reveal that TGF-beta signaling is crucial for establishing and maintaining defining features of mature pancreatic beta cells.


Asunto(s)
Diabetes Mellitus/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Islotes Pancreáticos/metabolismo , Transducción de Señal , Proteína smad7/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Envejecimiento/fisiología , Animales , Proteínas Morfogenéticas Óseas/deficiencia , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Diabetes Mellitus/genética , Diabetes Mellitus/patología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Factores de Diferenciación de Crecimiento , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Islotes Pancreáticos/patología , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Ratones , Ratones Transgénicos , Proteína smad7/genética , Transactivadores/genética , Transactivadores/metabolismo
17.
Mol Cell Biol ; 26(1): 117-30, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16354684

RESUMEN

PTF1 is a trimeric transcription factor essential to the development of the pancreas and to the maintenance of the differentiated state of the adult exocrine pancreas. It comprises a dimer of P48/PTF1a (a pancreas and neural restricted basic helix-loop-helix [bHLH] protein) and a class A bHLH protein, together with a third protein that we show can be either the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L. In mature acinar cells, PTF1 exclusively contains the RBP-L isoform and is bound to the promoters of acinar specific genes. P48 interacts with the RBP subunit primarily through two short conserved tryptophan-containing motifs, similar to the motif of the Notch intracellular domain (NotchIC) that interacts with RBP-J. The transcriptional activities of the J and L forms of PTF1 are independent of Notch signaling, because P48 occupies the NotchIC docking site on RBP-J and RBP-L does not bind the NotchIC. Mutations that delete one or both of the RBP-interacting motifs of P48 eliminate RBP-binding and are associated with a human genetic disorder characterized by pancreatic and cerebellar agenesis, which indicates that the association of P48 and RBPs is required for proper embryonic development. The presence of related peptide motifs in other transcription factors indicates a broader Notch-independent function for RBPJ/SU(H).


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Secuencias Hélice-Asa-Hélice , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Páncreas/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Inmunoprecipitación de Cromatina , Secuencia Conservada , ADN/metabolismo , Proteínas de Unión al ADN/genética , Secuencias Hélice-Asa-Hélice/genética , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Ratones , Datos de Secuencia Molecular , Receptores Notch/genética , Receptores Notch/metabolismo , Eliminación de Secuencia , Factores de Transcripción/genética , Transcripción Genética
18.
Dev Cell ; 50(6): 744-754.e4, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31422917

RESUMEN

Activating mutations in Kras are nearly ubiquitous in human pancreatic cancer and initiate precancerous pancreatic intraepithelial neoplasia (PanINs) when induced in mouse acinar cells. PanINs normally take months to form but are accelerated by deletion of acinar cell differentiation factors such as Ptf1a, suggesting that loss of cell identity is rate limiting for pancreatic tumor initiation. Using a genetic mouse model that allows for independent control of oncogenic Kras and Ptf1a expression, we demonstrate that sustained Ptf1a is sufficient to prevent Kras-driven tumorigenesis, even in the presence of tumor-promoting inflammation. Furthermore, reintroducing Ptf1a into established PanINs reverts them to quiescent acinar cells in vivo. Similarly, Ptf1a re-expression in human pancreatic cancer cells inhibits their growth and colony-forming ability. Our results suggest that reactivation of an endogenous differentiation program can prevent and reverse oncogene-driven transformation in cells harboring tumor-driving mutations, introducing a potential paradigm for solid tumor prevention and treatment.


Asunto(s)
Carcinogénesis/patología , Diferenciación Celular , Neoplasias Pancreáticas/patología , Células Acinares/metabolismo , Células Acinares/patología , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Células Clonales , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Inflamación/patología , Ratones , Neoplasias Pancreáticas/genética , Pancreatitis/patología , Fenotipo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
19.
Curr Opin Genet Dev ; 12(5): 540-7, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12200159

RESUMEN

The results of several new studies encourage a revision of fundamental hypotheses concerning the cellular and molecular mechanisms underlying pancreatic morphogenesis and cell differentiation in the embryo. The roles of FGF- and BMP-signaling indicate a fundamental difference in the induction of the dorsal and the ventral pancreatic anlage. Final commitment to the pancreatic fate requires the action of several transcriptional regulators including IPF1/PDX1, PBX1 and PTF1-P48 after the onset of pancreatic bud formation. Two, largely independent endocrine cell lineages develop during the formation of the embryonic pancreas. Lineage tracing has begun to refine our understanding of the origins of the acinar, ductal and islet cells.


Asunto(s)
Páncreas/embriología , Páncreas/crecimiento & desarrollo , Transducción de Señal/fisiología , Factores de Transcripción/fisiología , Transcripción Genética/fisiología , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Humanos , Morfogénesis
20.
Diabetes ; 54(9): 2586-95, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16123346

RESUMEN

The homeodomain transcription factor Pdx1 is essential for pancreas development. To investigate the role of Pdx1 in the adult pancreas, we employed a mouse model in which transcription of Pdx1 could be reversibly repressed by administration of doxycycline. Repression of Pdx1 in adult mice impaired expression of insulin and glucagon, leading to diabetes within 14 days. Pdx1 repression was associated with increased cell proliferation predominantly in the exocrine pancreas and upregulation of genes implicated in pancreas regeneration. Following withdrawal of doxycycline and derepression of Pdx1, normoglycemia was restored within 28 days; during this period, Pdx1(+)/Ins(+) and Pdx(+)/Ins(-) cells were observed in association with the duct epithelia. These findings confirm that Pdx1 is required for beta-cell function in the adult pancreas and indicate that in the absence of Pdx1 expression, a regenerative program is initiated with the potential for Pdx1-dependent beta-cell neogenesis.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas de Homeodominio/biosíntesis , Islotes Pancreáticos/fisiología , Transactivadores/biosíntesis , Animales , Diabetes Mellitus Experimental , Doxiciclina/farmacología , Perfilación de la Expresión Génica , Insulina/biosíntesis , Islotes Pancreáticos/efectos de los fármacos , Ratones , Ratones Noqueados , Ratones Transgénicos , Regeneración/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda