Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochim Biophys Acta ; 1806(1): 58-65, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20122996

RESUMEN

The discovery that Helicobacter pylori is associated with gastric cancer has led to numerous studies that investigate the mechanisms by which H. pylori induces carcinogenesis. Gastric cancer shows genetic instability both in nuclear and mitochondrial DNA, besides impairment of important DNA repair pathways. As such, this review highlights the consequences of H. pylori infection on the integrity of DNA in the host cells. By down-regulating major DNA repair pathways, H. pylori infection has the potential to generate mutations. In addition, H. pylori infection can induce direct changes on the DNA of the host, such as oxidative damage, methylation, chromosomal instability, microsatellite instability, and mutations. Interestingly, H. pylori infection generates genetic instability in nuclear and mitochondrial DNA. Based on the reviewed literature we conclude that H. pylori infection promotes gastric carcinogenesis by at least three different mechanisms: (1) a combination of increased endogenous DNA damage and decreased repair activities, (2) induction of mutations in the mitochondrial DNA, and (3) generation of a transient mutator phenotype that induces mutations in the nuclear genome.


Asunto(s)
Inestabilidad Genómica , Infecciones por Helicobacter/complicaciones , Helicobacter pylori , Neoplasias Gástricas/etiología , Animales , Apoptosis , Proliferación Celular , Daño del ADN , Reparación del ADN , ADN Mitocondrial/genética , Infecciones por Helicobacter/genética , Humanos
2.
Clin Cancer Res ; 15(9): 2995-3002, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19383819

RESUMEN

PURPOSE: Helicobacter pylori is a major cause of gastric carcinoma. To investigate a possible link between bacterial infection and genetic instability of the host genome, we examined the effect of H. pylori infection on known cellular repair pathways in vitro and in vivo. Moreover, various types of genetic instabilities in the nuclear and mitochondrial DNA (mtDNA) were examined. EXPERIMENTAL DESIGN: We observed the effects of H. pylori infection on a gastric cell line (AGS), on C57BL/6 mice, and on individuals with chronic gastritis. In AGS cells, the effect of H. pylori infection on base excision repair and mismatch repair (MMR) was analyzed by reverse transcription-PCR, Western blot, and activity assays. In mice, MMR expression was analyzed by reverse transcription-PCR and the CA repeat instabilities were examined by Mutation Detection Enhancement gel electrophoresis. Mutation spectra in AGS cells and chronic gastritis tissue were determined by PCR, single-stranded conformation polymorphism, and sequencing. H. pylori vacA and cagA genotyping was determined by multiplex PCR and reverse hybridization. RESULTS: Following H. pylori infection, the activity and expression of base excision repair and MMR are down-regulated both in vitro and in vivo. Moreover, H. pylori induces genomic instability in nuclear CA repeats in mice and in mtDNA of AGS cells and chronic gastritis tissue, and this effect in mtDNA is associated with bacterial virulence. CONCLUSIONS: Our results suggest that H. pylori impairs central DNA repair mechanisms, inducing a transient mutator phenotype, rendering gastric epithelial cells vulnerable to the accumulation of genetic instability and thus contributing to gastric carcinogenesis in infected individuals.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/genética , Inestabilidad Genómica , Infecciones por Helicobacter/genética , Helicobacter pylori/fisiología , Neoplasias Gástricas/genética , Adenocarcinoma/genética , Adenocarcinoma/microbiología , Adenocarcinoma/patología , Adulto , Animales , Apoptosis , Western Blotting , Núcleo Celular/metabolismo , Proliferación Celular , Células Cultivadas , Reparación del ADN , ADN Mitocondrial/metabolismo , Repeticiones de Dinucleótido/genética , Femenino , Infecciones por Helicobacter/microbiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología
3.
Nat Microbiol ; 1(11): 16152, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27564131

RESUMEN

The human gastrointestinal (GI) tract is the habitat for hundreds of microbial species, of which many cannot be cultivated readily, presumably because of the dependencies between species1. Studies of microbial co-occurrence in the gut have indicated community substructures that may reflect functional and metabolic interactions between cohabiting species2,3. To move beyond species co-occurrence networks, we systematically identified transcriptional interactions between pairs of coexisting gut microbes using metagenomics and microarray-based metatranscriptomics data from 233 stool samples from Europeans. In 102 significantly interacting species pairs, the transcriptional changes led to a reduced expression of orthologous functions between the coexisting species. Specific species-species transcriptional interactions were enriched for functions important for H2 and CO2 homeostasis, butyrate biosynthesis, ATP-binding cassette (ABC) transporters, flagella assembly and bacterial chemotaxis, as well as for the metabolism of carbohydrates, amino acids and cofactors. The analysis gives the first insight into the microbial community-wide transcriptional interactions, and suggests that the regulation of gene expression plays an important role in species adaptation to coexistence and that niche segregation takes place at the transcriptional level.


Asunto(s)
Microbioma Gastrointestinal/genética , Perfilación de la Expresión Génica , Metagenoma , Interacciones Microbianas , Transportadoras de Casetes de Unión a ATP/genética , Bifidobacterium bifidum/genética , Bifidobacterium bifidum/metabolismo , Butiratos/metabolismo , Dióxido de Carbono/metabolismo , Dinamarca , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Humanos , Redes y Vías Metabólicas/genética , Interacciones Microbianas/genética , Interacciones Microbianas/fisiología , España , Análisis de Sistemas
4.
PLoS One ; 9(6): e100739, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24955767

RESUMEN

Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co-cultured with human intestinal cells. We show that filtered media from co-cultures contain a factor that reduces conjugation efficiency. Protease treatment of the filtered media eliminates this inhibition of conjugation. This data suggests that a peptide or protein based factor is secreted on the apical side of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut.


Asunto(s)
Conjugación Genética , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/aislamiento & purificación , Intestinos/citología , Plásmidos/metabolismo , Células CACO-2 , Técnicas de Cocultivo , Células Epiteliales/metabolismo , Escherichia coli/genética , Humanos , Péptidos/metabolismo
5.
Mech Ageing Dev ; 134(10): 460-6, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24012633

RESUMEN

Helicobacter pylori infection is an important factor for the development of atrophic gastritis and gastric carcinogenesis. However, the mechanisms explaining the effects of H. pylori infection are not fully elucidated. H. pylori infection is known to induce genetic instability in both nuclear and mitochondrial DNA of gastric epithelial cells. The mutagenic effect of H. pylori infection on nuclear DNA is known to be a consequence, in part, of a down-regulation of expression and activity of major DNA repair pathways. In this study, we demonstrate that H. pylori infection of gastric adenocarcinoma cells causes mtDNA mutations and a decrease of mtDNA content. Consequently, we show a decrease of respiration coupled ATP turnover and respiratory capacity and accordingly a lower level and activity of complex I of the electron transport chain. We wanted to investigate if the increased mutational load in the mitochondrial genome was caused by down-regulation of mitochondrial DNA repair pathways. We lowered the expression of APE-1 and YB-1, which are believed to be involved in mitochondrial base excision repair and mismatch repair. Our results suggest that both APE-1 and YB-1 are involved in mtDNA repair during H. pylori infection, furthermore, the results demonstrate that multiple DNA repair activities are involved in protecting mtDNA during infection.


Asunto(s)
Reparación del ADN , Mucosa Gástrica/metabolismo , Inestabilidad Genómica , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Mitocondrias/metabolismo , Línea Celular Tumoral , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Genoma Mitocondrial , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/patología , Humanos , Mitocondrias/genética , Mitocondrias/patología , Mutación , Estómago/microbiología , Estómago/patología
6.
PLoS One ; 8(4): e63147, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23646188

RESUMEN

BACKGROUND: Achlorhydria caused by e.g. atrophic gastritis allows for bacterial overgrowth, which induces chronic inflammation and damage to the mucosal cells of infected individuals driving gastric malignancies and cancer. Enterococcus faecalis (E. faecalis) can colonize achlohydric stomachs and we therefore wanted to study the impact of E. faecalis infection on inflammatory response, reactive oxygen species (ROS) formation, mitochondrial respiration, and mitochondrial genetic stability in gastric mucosal cells. METHODS: To separate the changes induced by bacteria from those of the inflammatory cells we established an in vitro E. faecalis infection model system using the gastric carcinoma cell line MKN74. Total ROS and superoxide was measured by fluorescence microscopy. Cellular oxygen consumption was characterized non-invasively using XF24 microplate based respirometry. Gene expression was examined by microarray, and response pathways were identified by Gene Set Analysis (GSA). Selected gene transcripts were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Mitochondrial mutations were determined by sequencing. RESULTS: Infection of MKN74 cells with E. faecalis induced intracellular ROS production through a pathway independent of oxidative phosphorylation (oxphos). Furthermore, E. faecalis infection induced mitochondrial DNA instability. Following infection, genes coding for inflammatory response proteins were transcriptionally up-regulated while DNA damage repair and cell cycle control genes were down-regulated. Cell growth slowed down when infected with viable E. faecalis and responded in a dose dependent manner to E. faecalis lysate. CONCLUSIONS: Infection by E. faecalis induced an oxphos-independent intracellular ROS response and damaged the mitochondrial genome in gastric cell culture. Finally the bacteria induced an NF-κB inflammatory response as well as impaired DNA damage response and cell cycle control gene expression. TRANSCRIPT PROFILING: Array Express accession number E-MEXP-3496.


Asunto(s)
Daño del ADN , Enterococcus faecalis , Infecciones por Bacterias Grampositivas/complicaciones , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Análisis por Conglomerados , Reparación del ADN , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/microbiología , Espacio Intracelular/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Biológicos , FN-kappa B/metabolismo , Fosforilación Oxidativa , Transducción de Señal , Neoplasias Gástricas/complicaciones , Superóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda