Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Cell Sci ; 134(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34338295

RESUMEN

Endothelial-to-mesenchymal transition (EndMT) is the biological process through which endothelial cells transdifferentiate into mesenchymal cells. During embryo development, EndMT regulates endocardial cushion formation via TGFß/BMP signaling. In adults, EndMT is mainly activated during pathological conditions. Hence, it is necessary to characterize molecular regulators cooperating with TGFß signaling in driving EndMT, to identify potential novel therapeutic targets to treat these pathologies. Here, we studied YAP, a transcriptional co-regulator involved in several biological processes, including epithelial-to-mesenchymal transition (EMT). As EndMT is the endothelial-specific form of EMT, and YAP (herein referring to YAP1) and TGFß signaling cross-talk in other contexts, we hypothesized that YAP contributes to EndMT by modulating TGFß signaling. We demonstrate that YAP is required to trigger TGFß-induced EndMT response, specifically contributing to SMAD3-driven EndMT early gene transcription. We provide novel evidence that YAP acts as SMAD3 transcriptional co-factor and prevents GSK3ß-mediated SMAD3 phosphorylation, thus protecting SMAD3 from degradation. YAP is therefore emerging as a possible candidate target to inhibit pathological TGFß-induced EndMT at early stages.


Asunto(s)
Células Endoteliales , Factor de Crecimiento Transformador beta , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Fosforilación , Factor de Crecimiento Transformador beta/metabolismo
2.
Circ Res ; 127(8): 1056-1073, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32673519

RESUMEN

RATIONALE: Intercellular tight junctions are crucial for correct regulation of the endothelial barrier. Their composition and integrity are affected in pathological contexts, such as inflammation and tumor growth. JAM-A (junctional adhesion molecule A) is a transmembrane component of tight junctions with a role in maintenance of endothelial barrier function, although how this is accomplished remains elusive. OBJECTIVE: We aimed to understand the molecular mechanisms through which JAM-A expression regulates tight junction organization to control endothelial permeability, with potential implications under pathological conditions. METHODS AND RESULTS: Genetic deletion of JAM-A in mice significantly increased vascular permeability. This was associated with significantly decreased expression of claudin-5 in the vasculature of various tissues, including brain and lung. We observed that C/EBP-α (CCAAT/enhancer-binding protein-α) can act as a transcription factor to trigger the expression of claudin-5 downstream of JAM-A, to thus enhance vascular barrier function. Accordingly, gain-of-function for C/EBP-α increased claudin-5 expression and decreased endothelial permeability, as measured by the passage of fluorescein isothiocyanate (FITC)-dextran through endothelial monolayers. Conversely, C/EBP-α loss-of-function showed the opposite effects of decreased claudin-5 levels and increased endothelial permeability. Mechanistically, JAM-A promoted C/EBP-α expression through suppression of ß-catenin transcriptional activity, and also through activation of EPAC (exchange protein directly activated by cAMP). C/EBP-α then directly binds the promoter of claudin-5 to thereby promote its transcription. Finally, JAM-A-C/EBP-α-mediated regulation of claudin-5 was lost in blood vessels from tissue biopsies from patients with glioblastoma and ovarian cancer. CONCLUSIONS: We describe here a novel role for the transcription factor C/EBP-α that is positively modulated by JAM-A, a component of tight junctions that acts through EPAC to up-regulate the expression of claudin-5, to thus decrease endothelial permeability. Overall, these data unravel a regulatory molecular pathway through which tight junctions limit vascular permeability. This will help in the identification of further therapeutic targets for diseases associated with endothelial barrier dysfunction. Graphic Abstract: An graphic abstract is available for this article.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Permeabilidad Capilar , Moléculas de Adhesión Celular/metabolismo , Claudina-5/metabolismo , Células Endoteliales/metabolismo , Receptores de Superficie Celular/metabolismo , Uniones Estrechas/metabolismo , Adulto , Anciano , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proteínas Potenciadoras de Unión a CCAAT/genética , Moléculas de Adhesión Celular/genética , Línea Celular , Claudina-5/genética , Femenino , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neovascularización Patológica , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Receptores de Superficie Celular/genética , Transducción de Señal , Uniones Estrechas/genética , Regulación hacia Arriba
5.
Hum Mol Genet ; 23(12): 3250-68, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24463623

RESUMEN

Globoid cell leukodystrophy (GLD) is an inherited lysosomal storage disease caused by ß-galactocerebrosidase (GALC) deficiency. Gene therapy (GT) should provide rapid, extensive and lifetime GALC supply in central nervous system (CNS) tissues to prevent or halt irreversible neurologic progression. Here we used a lentiviral vector (LV) to transfer a functional GALC gene in the brain of Twitcher mice, a severe GLD model. A single injection of LV.GALC in the external capsule of Twitcher neonates resulted in robust transduction of neural cells with minimal and transient activation of inflammatory and immune response. Importantly, we documented a proficient transduction of proliferating and post-mitotic oligodendroglia, a relevant target cell type in GLD. GALC activity (30-50% of physiological levels) was restored in the whole CNS of treated mice as early as 8 days post-injection. The early and stable enzymatic supply ensured partial clearance of storage and reduction of psychosine levels, translating in amelioration of histopathology and enhanced lifespan. At 6 months post-injection in non-affected mice, LV genome persisted exclusively in the injected region, where transduced cells overexpressed GALC. Integration site analysis in transduced brain tissues showed no aberrant clonal expansion and preferential targeting of neural-specific genes. This study establishes neonatal LV-mediated intracerebral GT as a rapid, effective and safe therapeutic intervention to correct CNS pathology in GLD and provides a strong rationale for its application in this and similar leukodystrophies, alone or in combination with therapies targeting the somatic pathology, with the final aim of providing an effective and timely treatment of these global disorders.


Asunto(s)
Sistema Nervioso Central/patología , Leucodistrofia de Células Globoides/patología , Leucodistrofia de Células Globoides/terapia , beta-Galactosidasa/metabolismo , Animales , Animales Recién Nacidos , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/virología , Modelos Animales de Enfermedad , Cápsula Externa , Terapia Genética , Vectores Genéticos/uso terapéutico , Células HEK293 , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Leucodistrofia de Células Globoides/genética , Ratones , Ratones Endogámicos C57BL , Transducción Genética , beta-Galactosidasa/genética
6.
Hum Mol Genet ; 21(21): 4732-50, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22859505

RESUMEN

We report a novel role for the lysosomal galactosylceramidase (GALC), which is defective in globoid cell leukodystrophy (GLD), in maintaining a functional post-natal subventricular zone (SVZ) neurogenic niche. We show that proliferation/self-renewal of neural stem cells (NSCs) and survival of their neuronal and oligodendroglial progeny are impaired in GALC-deficient mice. Using drugs to modulate inflammation and gene transfer to rescue GALC expression and activity, we show that lipid accumulation resulting from GALC deficiency acts as a cell-autonomous pathogenic stimulus in enzyme-deficient NSCs and progeny before upregulation of inflammatory markers, which later sustain a non-cell-autonomous dysfunction. Importantly, we provide evidence that supply of functional GALC provided by neonatal intracerebral transplantation of NSCs ameliorates the functional impairment in endogenous SVZ cells. Insights into the mechanism/s underlying GALC-mediated regulation of early post-natal neurogenic niches improve our understanding of the multi-component pathology of GLD. The occurrence of a restricted period of SVZ neurogenesis in infancy supports the implications of our study for the development of therapeutic strategies to treat this severe pediatric neurodegenerative disorder.


Asunto(s)
Sistema Nervioso Central , Galactosilceramidasa , Leucodistrofia de Células Globoides , Células-Madre Neurales , Animales , Proliferación Celular , Trasplante de Células , Sistema Nervioso Central/enzimología , Sistema Nervioso Central/crecimiento & desarrollo , Niño , Modelos Animales de Enfermedad , Galactosilceramidasa/deficiencia , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Transferencia de Gen , Terapia Genética , Humanos , Leucodistrofia de Células Globoides/enzimología , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/enzimología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/enzimología , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/enzimología , Oligodendroglía/metabolismo
7.
Small Methods ; : e2400210, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747088

RESUMEN

Glioblastomas exhibit remarkable heterogeneity at various levels, including motility modes and mechanoproperties that contribute to tumor resistance and recurrence. In a recent study using gridded micropatterns mimicking the brain vasculature, glioblastoma cell motility modes, mechanical properties, formin content, and substrate chemistry are linked. Now is presented, SP2G (SPheroid SPreading on Grids), an analytic platform designed to identify the migratory modes of patient-derived glioblastoma cells and rapidly pinpoint the most invasive sub-populations. Tumorspheres are imaged as they spread on gridded micropatterns and analyzed by this semi-automated, open-source, Fiji macro suite that characterizes migration modes accurately. SP2G can reveal intra-patient motility heterogeneity with molecular correlations to specific integrins and EMT markers. This system presents a versatile and potentially pan-cancer workflow to detect diverse invasive tumor sub-populations in patient-derived specimens and offers a valuable tool for therapeutic evaluations at the individual patient level.

8.
J Clin Invest ; 134(15)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-39087467

RESUMEN

The blood-brain barrier (BBB) acquires unique properties to regulate neuronal function during development. The formation of the BBB, which occurs in tandem with angiogenesis, is directed by the Wnt/ß-catenin signaling pathway. Yet the exact molecular interplay remains elusive. Our study reveals the G protein-coupled receptor GPR126 as a critical target of canonical Wnt signaling, essential for the development of the BBB's distinctive vascular characteristics and its functional integrity. Endothelial cell-specific deletion of the Gpr126 gene in mice induced aberrant vascular morphogenesis, resulting in disrupted BBB organization. Simultaneously, heightened transcytosis in vitro compromised barrier integrity, resulting in enhanced vascular permeability. Mechanistically, GPR126 enhanced endothelial cell migration, pivotal for angiogenesis, acting through an interaction between LRP1 and ß1 integrin, thereby balancing the levels of ß1 integrin activation and recycling. Overall, we identified GPR126 as a specifier of an organotypic vascular structure, which sustained angiogenesis and guaranteed the acquisition of the BBB properties during development.


Asunto(s)
Barrera Hematoencefálica , Integrina beta1 , Receptores Acoplados a Proteínas G , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Movimiento Celular , Células Endoteliales/metabolismo , Integrina beta1/metabolismo , Integrina beta1/genética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Ratones Noqueados , Neovascularización Fisiológica , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Vía de Señalización Wnt , Masculino , Femenino
9.
Hum Mol Genet ; 19(11): 2208-27, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20203170

RESUMEN

Leukodystrophies are rare diseases caused by defects in the genes coding for lysosomal enzymes that degrade several glycosphingolipids. Gene therapy for leukodystrophies requires efficient distribution of the missing enzymes in CNS tissues to prevent demyelination and neurodegeneration. In this work, we targeted the external capsule (EC), a white matter region enriched in neuronal projections, with the aim of obtaining maximal protein distribution from a single injection site. We used bidirectional (bd) lentiviral vectors (LV) (bdLV) to ensure coordinate expression of a therapeutic gene (beta-galactocerebrosidase, GALC; arylsulfatase A, ARSA) and of a reporter gene, thus monitoring simultaneously transgene distribution and enzyme reconstitution. A single EC injection of bdLV.GALC in early symptomatic twitcher mice (a murine model of globoid cell leukodystrophy) resulted in rapid and robust expression of a functional GALC protein in the telencephalon, cerebellum, brainstem and spinal cord. This led to global rescue of enzymatic activity, significant reduction of tissue storage and decrease of activated astroglia and microglia. Widespread protein distribution and complete metabolic correction were also observed after EC injection of bdLV.ARSA in a mouse model of metachromatic leukodystrophy. Our data indicated axonal transport, distribution through cerebrospinal fluid flow and cross-correction as the mechanisms contributing to widespread bioavailability of GALC and ARSA proteins in CNS tissues. LV-mediated gene delivery of lysosomal enzymes by targeting highly interconnected CNS regions is a potentially effective strategy that, combined with a treatment able to target the PNS and peripheral organs, may provide significant therapeutic benefit to patients affected by leukodystrophies.


Asunto(s)
Sistema Nervioso Central/enzimología , Terapia Genética/métodos , Leucodistrofia de Células Globoides/enzimología , Leucodistrofia Metacromática/enzimología , Animales , Transporte Axonal/fisiología , Disponibilidad Biológica , Western Blotting , Cerebrósido Sulfatasa/genética , Cerebrósido Sulfatasa/metabolismo , Cerebrósido Sulfatasa/farmacocinética , Cromatografía en Gel , Cartilla de ADN/genética , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo , Galactosilceramidasa/farmacocinética , Vectores Genéticos/administración & dosificación , Inmunohistoquímica , Lentivirus , Leucodistrofia de Células Globoides/terapia , Leucodistrofia Metacromática/terapia , Ratones , Ratones Noqueados , Microscopía Confocal , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
STAR Protoc ; 3(2): 101448, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35712011

RESUMEN

In the study of cerebral cavernous malformations (CCMs), the quantification of lesion burden is the main parameter for evaluation of disease severity and efficacy of drugs. We describe a reliable and cost-effective protocol to evaluate the number and the size of vascular malformations in the murine brain. This approach is based on histology and confocal imaging and can be performed with standard laboratory equipment. We detail the preparation of brain sections followed by image acquisition and analysis. For complete details on the use and execution of this protocol, please refer to Maderna et al. (2022).


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Animales , Encéfalo/diagnóstico por imagen , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico por imagen , Técnicas Histológicas , Ratones
11.
iScience ; 25(3): 103943, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35265815

RESUMEN

Cavernomas are multi-lumen and blood-filled vascular malformations which form in the brain and the spinal cord. They lead to hemorrhage, epileptic seizures, neurological deficits, and paresthesia. An effective medical treatment is still lacking, and the available murine models for cavernomas have several limitations for preclinical studies. These include disease phenotypes that differ from human diseases, such as restriction of the lesions to the cerebellum, and absence of acute hemorrhage. Additional limitations of current murine models include rapid development of lesions, which are lethal before the first month of age. Here, we have characterized a murine model that recapitulates features of the human disease: lesions develop after weaning throughout the entire CNS, including the spinal cord, and undergo acute hemorrhage. This provides a preclinical model to develop new drugs for treatment of acute hemorrhage in the brain and spinal cord, as an unmet medical emergency for patients with cavernomas.

12.
Elife ; 92020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33138917

RESUMEN

Cerebral cavernous malformation (CCM) is a rare neurovascular disease that is characterized by enlarged and irregular blood vessels that often lead to cerebral hemorrhage. Loss-of-function mutations to any of three genes results in CCM lesion formation; namely, KRIT1, CCM2, and PDCD10 (CCM3). Here, we report for the first time in-depth single-cell RNA sequencing, combined with spatial transcriptomics and immunohistochemistry, to comprehensively characterize subclasses of brain endothelial cells (ECs) under both normal conditions and after deletion of Pdcd10 (Ccm3) in a mouse model of CCM. Integrated single-cell analysis identifies arterial ECs as refractory to CCM transformation. Conversely, a subset of angiogenic venous capillary ECs and respective resident endothelial progenitors appear to be at the origin of CCM lesions. These data are relevant for the understanding of the plasticity of the brain vascular system and provide novel insights into the molecular basis of CCM disease at the single cell level.


Asunto(s)
Células Endoteliales/citología , Hemangioma Cavernoso del Sistema Nervioso Central/fisiopatología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Arterias/patología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Diferenciación Celular , Modelos Animales de Enfermedad , Eliminación de Gen , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Mitosis , Neovascularización Patológica , Fenotipo , RNA-Seq , Análisis de Secuencia de ARN , Transducción de Señal/genética , Análisis de la Célula Individual , Tamoxifeno/farmacología , Transcriptoma
13.
Stem Cells ; 26(2): 505-16, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17975226

RESUMEN

Recent studies have raised appealing possibilities of replacing damaged or lost neural cells by transplanting in vitro-expanded neural precursor cells (NPCs) and/or their progeny. Magnetic resonance (MR) tracking of superparamagnetic iron oxide (SPIO)-labeled cells is a noninvasive technique to track transplanted cells in longitudinal studies on living animals. Murine NPCs and human mesenchymal or hematopoietic stem cells can be efficiently labeled by SPIOs. However, the validation of SPIO-based protocols to label human neural precursor cells (hNPCs) has not been extensively addressed. Here, we report the development and validation of optimized protocols using two SPIOs (Sinerem and Endorem) to label human hNPCs that display bona fide stem cell features in vitro. A careful titration of both SPIOs was required to set the conditions resulting in efficient cell labeling without impairment of cell survival, proliferation, self-renewal, and multipotency. In vivo magnetic resonance imaging (MRI) combined with histology and confocal microscopy indicated that low numbers (5 x 10(3) to 1 x 10(4)) of viable SPIO-labeled hNPCs could be efficiently detected in the short term after transplantation in the adult murine brain and could be tracked for at least 1 month in longitudinal studies. By using this approach, we also clarified the impact of donor cell death to the MR signal. This study describes a simple protocol to label NPCs of human origin using SPIOs at optimized low dosages and demonstrates the feasibility of noninvasive imaging of labeled cells after transplantation in the brain; it also evidentiates potential limitations of the technique that have to be considered, particularly in the perspective of neural cell-based clinical applications.


Asunto(s)
Hierro/farmacocinética , Neuronas/citología , Neuronas/metabolismo , Óxidos/farmacocinética , Células Madre/citología , Células Madre/metabolismo , Animales , Trasplante de Tejido Encefálico , Medios de Contraste/farmacocinética , Dextranos , Óxido Ferrosoférrico , Humanos , Imagen por Resonancia Magnética , Magnetismo , Nanopartículas de Magnetita , Ratones , Ratones SCID , Neuronas/trasplante , Trasplante de Células Madre , Trasplante Heterólogo
14.
Nat Commun ; 10(1): 2761, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31235698

RESUMEN

Cerebral cavernous malformation (CCM) is a neurovascular familial or sporadic disease that is characterised by capillary-venous cavernomas, and is due to loss-of-function mutations to any one of three CCM genes. Familial CCM follows a two-hit mechanism similar to that of tumour suppressor genes, while in sporadic cavernomas only a small fraction of endothelial cells shows mutated CCM genes. We reported that in mouse models and in human patients, endothelial cells lining the lesions have different features from the surrounding endothelium, as they express mesenchymal/stem-cell markers. Here we show that cavernomas originate from clonal expansion of few Ccm3-null endothelial cells that express mesenchymal/stem-cell markers. These cells then attract surrounding wild-type endothelial cells, inducing them to express mesenchymal/stem-cell markers and to contribute to cavernoma growth. These characteristics of Ccm3-null cells are reminiscent of the tumour-initiating cells that are responsible for tumour growth. Our data support the concept that CCM has benign tumour characteristics.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Neoplasias del Sistema Nervioso Central/patología , Células Endoteliales/patología , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas/genética , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Biomarcadores/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/citología , Encéfalo/patología , Diferenciación Celular/genética , Línea Celular , Neoplasias del Sistema Nervioso Central/genética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/patología , Femenino , Técnicas de Inactivación de Genes , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación con Pérdida de Función , Proteínas de la Membrana/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas/metabolismo
15.
Cell Rep ; 8(5): 1432-46, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25159140

RESUMEN

MicroRNA (miRNA) transfer via exosomes may mediate cell-to-cell communication. Interestingly, specific miRNAs are enriched in exosomes in a cell-type-dependent fashion. However, the mechanisms whereby miRNAs are sorted to exosomes and the significance of miRNA transfer to acceptor cells are unclear. We used macrophages and endothelial cells (ECs) as a model of heterotypic cell communication in order to investigate both processes. RNA profiling of macrophages and their exosomes shows that miRNA sorting to exosomes is modulated by cell-activation-dependent changes of miRNA target levels in the producer cells. Genetically perturbing the expression of individual miRNAs or their targeted transcripts promotes bidirectional miRNA relocation from the cell cytoplasm/P bodies (sites of miRNA activity) to multivesicular bodies (sites of exosome biogenesis) and controls miRNA sorting to exosomes. Furthermore, the use of Dicer-deficient cells and reporter lentiviral vectors (LVs) for miRNA activity shows that exosomal miRNAs are transferred from macrophages to ECs to detectably repress targeted sequences.


Asunto(s)
Células Endoteliales/metabolismo , Exosomas/metabolismo , Macrófagos/metabolismo , MicroARNs/metabolismo , Animales , Secuencia de Bases , Comunicación Celular , Células Cultivadas , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Ratones , Datos de Secuencia Molecular , Cuerpos Multivesiculares/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
16.
PLoS One ; 5(4): e10145, 2010 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-20405042

RESUMEN

BACKGROUND: Cell-based therapy holds great promises for demyelinating diseases. Human-derived fetal and adult oligodendrocyte progenitors (OPC) gave encouraging results in experimental models of dysmyelination but their limited proliferation in vitro and their potential immunogenicity might restrict their use in clinical applications. Virtually unlimited numbers of oligodendroglial cells could be generated from long-term self-renewing human (h)-derived neural stem cells (hNSC). However, robust oligodendrocyte production from hNSC has not been reported so far, indicating the need for improved understanding of the molecular and environmental signals controlling hNSC progression through the oligodendroglial lineage. The aim of this work was to obtain enriched and renewable cultures of hNSC-derived oligodendroglial cells by means of epigenetic manipulation. METHODOLOGY/PRINCIPAL FINDINGS: We report here the generation of large numbers of hNSC-derived oligodendroglial cells by concurrent/sequential in vitro exposure to combinations of growth factors (FGF2, PDGF-AA), neurotrophins (NT3) and hormones (T3). In particular, the combination FGF2+NT3+PDGF-AA resulted in the maintenance and enrichment of an oligodendroglial cell population displaying immature phenotype (i.e., proliferation capacity and expression of PDGFRalpha, Olig1 and Sox10), limited self-renewal and increased migratory activity in vitro. These cells generate large numbers of oligodendroglial progeny at the early stages of maturation, both in vitro and after transplantation in models of CNS demyelination. CONCLUSIONS/SIGNIFICANCE: We describe a reliable method to generate large numbers of oligodendrocytes from a renewable source of somatic, non-immortalized NSC from the human foetal brain. We also provide insights on the mechanisms underlying the pro-oligodendrogenic effect of the treatments in vitro and discuss potential issues responsible for the limited myelinating capacity shown by hNSC-derived oligodendrocytes in vivo.


Asunto(s)
Enfermedades Desmielinizantes/terapia , Supervivencia de Injerto , Oligodendroglía/trasplante , Trasplante de Células Madre/métodos , Animales , Técnicas de Cultivo de Célula , Humanos , Ratones , Modelos Animales , Células Madre Multipotentes/citología , Neuronas/citología , Oligodendroglía/citología , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda