RESUMEN
INTRODUCTION: Large variability among Alzheimer's disease (AD) cases might impact genetic discoveries and complicate dissection of underlying biological pathways. METHODS: Genome Research at Fundacio ACE (GR@ACE) is a genome-wide study of dementia and its clinical endophenotypes, defined based on AD's clinical certainty and vascular burden. We assessed the impact of known AD loci across endophenotypes to generate loci categories. We incorporated gene coexpression data and conducted pathway analysis per category. Finally, to evaluate the effect of heterogeneity in genetic studies, GR@ACE series were meta-analyzed with additional genome-wide association study data sets. RESULTS: We classified known AD loci into three categories, which might reflect the disease clinical heterogeneity. Vascular processes were only detected as a causal mechanism in probable AD. The meta-analysis strategy revealed the ANKRD31-rs4704171 and NDUFAF6-rs10098778 and confirmed SCIMP-rs7225151 and CD33-rs3865444. DISCUSSION: The regulation of vasculature is a prominent causal component of probable AD. GR@ACE meta-analysis revealed novel AD genetic signals, strongly driven by the presence of clinical heterogeneity in the AD series.
Asunto(s)
Enfermedad de Alzheimer/genética , Endofenotipos , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Anciano , Enfermedad de Alzheimer/clasificación , Demencia/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , EspañaRESUMEN
Transfection efficiency is a critical parameter in gene therapy and molecular biology, representing the success rate at which nucleic acids are introduced and expressed in target cells. The combination of aptamers with nanotechnology-based delivery systems has demonstrated remarkable improvements in the transfection efficiency of therapeutic agents and holds significant potential for advancing gene therapy and the development of targeted treatments for various diseases, including cancer. In this work, cationic carbosilane dendritic systems are presented as an alternative to commercial transfection agents, demonstrating an increase in transfection efficiency when used for the internalization of apMNKQ2, an aptamer selected against a target in cancer. Their potential therapeutic use has been evaluated in breast cancer cell lines, MDA-MB-468 and MDA-MB-231, studying the cytotoxicity of the nanoconjugate, the internalization process, and its effect on cellular migration processes.
RESUMEN
We have recently witnessed that considerable progresses have been made in the rapid detection and appropriate treatments of COVID-19, but still this virus remains one of the main targets of world research. Based on the knowledge of the complex mechanism of viral infection we designed peptide-dendrimer inhibitors of SARS-CoV-2with the aim to block cell infection through interfering with the host-pathogen interactions. We used two different strategies: i) the first one aims at hindering the virus anchorage to the human cell; ii) the second -strategy points to interfere with the mechanism of virus-cell membrane fusion. We propose the use of different nanosized carriers, formed by several carbosilane dendritic wedges to deliver two different peptides designed to inhibit host interaction or virus entry. The antiviral activity of the peptide-dendrimers, as well as of free peptides and free dendrimers was evaluated through the use of SARS-CoV-2 pseudotyped lentivirus. The results obtained show that peptides designed to block host-pathogen interaction represent a valuable strategy for viral inhibition.
Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Dendrímeros , Péptidos , SARS-CoV-2 , Dendrímeros/química , Dendrímeros/farmacología , Humanos , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Péptidos/química , Péptidos/farmacología , Internalización del Virus/efectos de los fármacos , Diseño de Fármacos , COVID-19/virología , Silanos/química , Silanos/farmacología , Interacciones Huésped-PatógenoRESUMEN
There is an urgent need to identify biomarkers for Alzheimer's disease (AD), but the identification of reliable blood-based biomarkers has proven to be much more difficult than initially expected. The current availability of high-throughput multi-omics data opens new possibilities in this titanic task. Candidate Single Nucleotide Polymorphisms (SNPs) from large, genome-wide association studies (GWAS), meta-analyses exploring AD (case-control design), and quantitative measures for cortical structure and general cognitive performance were selected. The Genotype-Tissue Expression (GTEx) database was used for identifying expression quantitative trait loci (eQTls) among candidate SNPs. Genes significantly regulated by candidate SNPs were investigated for differential expression in AD cases versus controls in the brain and plasma, both at the mRNA and protein level. This approach allowed us to identify candidate susceptibility factors and biomarkers of AD, facing experimental validation with more evidence than with genetics alone.
RESUMEN
Alzheimer's disease (AD) is the most common form of dementia, currently affecting 35 million people worldwide. Apolipoprotein E (APOE) ε4 allele is the major risk factor for sporadic, late-onset AD (LOAD), which comprises over 95% of AD cases, increasing the risk of AD 4-12 fold. Despite this, the role of APOE in AD pathogenesis is still a mystery. Aiming for a better understanding of APOE-specific effects, the ADAPTED consortium analysed and integrated publicly available data of multiple OMICS technologies from both plasma and brain stratified by APOE haplotype (APOE2, APOE3 and APOE4). Combining genome-wide association studies (GWAS) with differential mRNA and protein expression analyses and single-nuclei transcriptomics, we identified genes and pathways contributing to AD in both APOE dependent and independent fashion. Interestingly, we characterised a set of biomarkers showing plasma and brain consistent protein profiles and opposite trends in APOE2 and APOE4 AD cases that could constitute screening tools for a disease that lacks specific blood biomarkers. Beside the identification of APOE-specific signatures, our findings advocate that this novel approach, based on the concordance across OMIC layers and tissues, is an effective strategy for overcoming the limitations of often underpowered single-OMICS studies.
RESUMEN
Long runs of homozygosity (ROH) are contiguous stretches of homozygous genotypes, which are a footprint of inbreeding and recessive inheritance. The presence of recessive loci is suggested for Alzheimer's disease (AD); however, their search has been poorly assessed to date. To investigate homozygosity in AD, here we performed a fine-scale ROH analysis using 10 independent cohorts of European ancestry (11,919 AD cases and 9181 controls.) We detected an increase of homozygosity in AD cases compared to controls [ßAVROH (CI 95%) = 0.070 (0.037-0.104); P = 3.91 × 10-5; ßFROH (CI95%) = 0.043 (0.009-0.076); P = 0.013]. ROHs increasing the risk of AD (OR > 1) were significantly overrepresented compared to ROHs increasing protection (p < 2.20 × 10-16). A significant ROH association with AD risk was detected upstream the HS3ST1 locus (chr4:11,189,482â11,305,456), (ß (CI 95%) = 1.09 (0.48 â 1.48), p value = 9.03 × 10-4), previously related to AD. Next, to search for recessive candidate variants in ROHs, we constructed a homozygosity map of inbred AD cases extracted from an outbred population and explored ROH regions in whole-exome sequencing data (N = 1449). We detected a candidate marker, rs117458494, mapped in the SPON1 locus, which has been previously associated with amyloid metabolism. Here, we provide a research framework to look for recessive variants in AD using outbred populations. Our results showed that AD cases have enriched homozygosity, suggesting that recessive effects may explain a proportion of AD heritability.