Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nat Methods ; 20(7): 1104-1113, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37429962

RESUMEN

Genetically encoded voltage indicators (GEVIs) enable optical recording of electrical signals in the brain, providing subthreshold sensitivity and temporal resolution not possible with calcium indicators. However, one- and two-photon voltage imaging over prolonged periods with the same GEVI has not yet been demonstrated. Here, we report engineering of ASAP family GEVIs to enhance photostability by inversion of the fluorescence-voltage relationship. Two of the resulting GEVIs, ASAP4b and ASAP4e, respond to 100-mV depolarizations with ≥180% fluorescence increases, compared with the 50% fluorescence decrease of the parental ASAP3. With standard microscopy equipment, ASAP4e enables single-trial detection of spikes in mice over the course of minutes. Unlike GEVIs previously used for one-photon voltage recordings, ASAP4b and ASAP4e also perform well under two-photon illumination. By imaging voltage and calcium simultaneously, we show that ASAP4b and ASAP4e can identify place cells and detect voltage spikes with better temporal resolution than commonly used calcium indicators. Thus, ASAP4b and ASAP4e extend the capabilities of voltage imaging to standard one- and two-photon microscopes while improving the duration of voltage recordings.


Asunto(s)
Encéfalo , Calcio , Animales , Ratones , Iluminación , Microscopía , Fotones
2.
bioRxiv ; 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37163029

RESUMEN

Hippocampal spiking sequences encode and link behavioral information across time. How inhibition sculpts these sequences remains unknown. We performed longitudinal voltage imaging of CA1 parvalbumin- and somatostatin-expressing interneurons in mice during an odor-cued working memory task, before and after training. During this task, pyramidal odor-specific sequences encode the cue throughout a delay period. In contrast, most interneurons encoded odor delivery, but not odor identity, nor delay time. Population inhibition was stable across days, with constant field turnover, though some cells retained odor-responses for days. At odor onset, a brief, synchronous burst of parvalbumin cells was followed by widespread membrane hyperpolarization and then rebound theta-paced spiking, synchronized across cells. Two-photon calcium imaging revealed that most pyramidal cells were suppressed throughout the odor. Positive pyramidal odor-responses coincided with interneuronal rebound spiking; otherwise, they had weak odor-selectivity. Therefore, inhibition increases the signal-to-noise ratio of cue representations, which is crucial for entraining downstream targets.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda