Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(21): 6601-6, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25964343

RESUMEN

Despite technological advances in metabolomics, large parts of the human metabolome are still unexplored. In an untargeted metabolomics screen aiming to identify substrates of the orphan transporter ATP-binding cassette subfamily C member 5 (ABCC5), we identified a class of mammalian metabolites, N-lactoyl-amino acids. Using parallel protein fractionation in conjunction with shotgun proteomics on fractions containing N-lactoyl-Phe-forming activity, we unexpectedly found that a protease, cytosolic nonspecific dipeptidase 2 (CNDP2), catalyzes their formation. N-lactoyl-amino acids are ubiquitous pseudodipeptides of lactic acid and amino acids that are rapidly formed by reverse proteolysis, a process previously considered to be negligible in vivo. The plasma levels of these metabolites strongly correlate with plasma levels of lactate and amino acid, as shown by increased levels after physical exercise and in patients with phenylketonuria who suffer from elevated Phe levels. Our approach to identify unknown metabolites and their biosynthesis has general applicability in the further exploration of the human metabolome.


Asunto(s)
Aminoácidos/metabolismo , Dipeptidasas/metabolismo , Lactatos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Aminoácidos/sangre , Citosol/metabolismo , Ejercicio Físico/fisiología , Células HEK293 , Humanos , Lactatos/sangre , Metaboloma , Proteolisis
2.
J Biol Chem ; 290(51): 30429-40, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26515061

RESUMEN

The ubiquitous efflux transporter ABCC5 (ATP-binding cassette subfamily C member 5) is present at high levels in the blood-brain barrier, neurons, and glia, but its in vivo substrates and function are not known. Using untargeted metabolomic screens, we show that Abcc5(-/-) mice accumulate endogenous glutamate conjugates in several tissues, but brain in particular. The abundant neurotransmitter N-acetylaspartylglutamate was 2.4-fold higher in Abcc5(-/-) brain. The metabolites that accumulated in Abcc5(-/-) tissues were depleted in cultured cells that overexpressed human ABCC5. In a vesicular membrane transport assay, ABCC5 also transported exogenous glutamate analogs, like the classic excitotoxic neurotoxins kainic acid, domoic acid, and NMDA; the therapeutic glutamate analog ZJ43; and, as previously shown, the anti-cancer drug methotrexate. Glutamate conjugates and analogs are of physiological relevance because they can affect the function of glutamate, the principal excitatory neurotransmitter in the brain. After CO2 asphyxiation, several immediate early genes were expressed at lower levels in Abcc5(-/-) brains than in wild type brains, suggesting altered glutamate signaling. Our results show that ABCC5 is a general glutamate conjugate and analog transporter that affects the disposition of endogenous metabolites, toxins, and drugs.


Asunto(s)
Encéfalo/metabolismo , Dipéptidos/farmacocinética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Dipéptidos/farmacología , Humanos , Ácido Kaínico/análogos & derivados , Ácido Kaínico/farmacocinética , Ácido Kaínico/farmacología , Ratones , Ratones Noqueados , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas del Tejido Nervioso/genética , Urea/análogos & derivados , Urea/farmacocinética , Urea/farmacología
3.
Arterioscler Thromb Vasc Biol ; 34(9): 1985-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24969777

RESUMEN

OBJECTIVE: Mutations in ABCC6 underlie the ectopic mineralization disorder pseudoxanthoma elasticum (PXE) and some forms of generalized arterial calcification of infancy, both of which affect the cardiovascular system. Using cultured cells, we recently showed that ATP-binding cassette subfamily C member 6 (ABCC6) mediates the cellular release of ATP, which is extracellularly rapidly converted into AMP and the mineralization inhibitor inorganic pyrophosphate (PPi). The current study was performed to determine which tissues release ATP in an ABCC6-dependent manner in vivo, where released ATP is converted into AMP and PPi, and whether human PXE ptients have low plasma PPi concentrations. APPROACH AND RESULTS: Using cultured primary hepatocytes and in vivo liver perfusion experiments, we found that ABCC6 mediates the direct, sinusoidal, release of ATP from the liver. Outside hepatocytes, but still within the liver vasculature, released ATP is converted into AMP and PPi. The absence of functional ABCC6 in patients with PXE leads to strongly reduced plasma PPi concentrations. CONCLUSIONS: Hepatic ABCC6-mediated ATP release is the main source of circulating PPi, revealing an unanticipated role of the liver in systemic PPi homeostasis. Patients with PXE have a strongly reduced plasma PPi level, explaining their mineralization disorder. Our results indicate that systemic PPi is relatively stable and that PXE, generalized arterial calcification of infancy, and other ectopic mineralization disorders could be treated with PPi supplementation therapy.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Adenosina Trifosfato/metabolismo , Difosfatos/sangre , Hígado/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/fisiología , Adenosina Monofosfato/sangre , Anciano , Animales , Células Cultivadas , Medios de Cultivo Condicionados , Femenino , Células HEK293 , Células HeLa , Hepatocitos/metabolismo , Homeostasis , Humanos , Hígado/irrigación sanguínea , Masculino , Ratones , Persona de Mediana Edad , Seudoxantoma Elástico/genética , Seudoxantoma Elástico/metabolismo , Ratas
4.
J Control Release ; 317: 154-165, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31765703

RESUMEN

Small, synthetic oligonucleotides (ON) are of great interest as potential disease modifying drugs, mainly because of their ability to modulate previously undruggable target mutations. To date, therapeutic applications of ON are, however, limited by their physicochemical properties, including poor stability, rapid excretion and low intracellular access. In order to overcome some of these shortcomings, ON are generally formulated using nanoparticle (NP) delivery systems. Alternatively, the poor stability can be circumvented by including chemical modifications to the backbone or sugars of the ON. Some of these modifications also result in better intracellular target access of these otherwise membrane-impermeable macromolecules. Therefore, complex formulation of ON into NP in order to overcome the hurdle of intracellular access might not always be needed, especially in case of local delivery. In this study, the delivery and functionality of chemically modified ON in free form was compared to polymeric NP assisted delivery, measuring their effectivity and efficiency. For this reason, phosphorothioate (PS) backbone-modified 18-mer ON with either 2'OMe or 2'MOE-modifications were selected, capable of eliciting exon-skipping of an aberrant exon in fluorescence based in vitro and in vivo model systems. The NP consisted of poly(D,L-lactic,co-glycolic acid) and poly-ß-amino-ester, previously demonstrated to successfully deliver nucleic acids via the pulmonary route. Several NP formulation parameters were tested in order to optimize the delivery of the ON, including ratio polymer:ON, NP size and concentration. The results reported here show clear differences between gymnotic and nanoparticle mediated ON delivery in terms of cellular uptake and local tissue distribution. In vitro, differences in exon-skipping efficiencies were observed with 2'OMe and 2'MOE ON either in free form or formulated in NP, with the striking observation that 2'OMe ON formulated in polymeric NP did not result in exon skipping. Gymnotic delivery of 2'MOE ON into the respiratory tract of mice resulted in functional delivery of exon-skipping ON into nasal epithelia and lungs as well as other downstream tissues and organs, pointing towards a gradual redistribution of locally delivered ONs, with limited but measurable systemic exposure. Conversely, NP-mediated delivery into the respiratory tract resulted in a more contained functional delivery at 10× lower ON doses compared to gymnotic delivery. Based on these findings we conclude that gymnotic delivery of 2'OMe or 2'MOE exon-skipping ON to the respiratory tract is effective, but that NP formulation might be advantageous in case spread of ON to non-target tissue can lead to undesired effects.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Animales , Ratones , Oligonucleótidos , ARN , Sistema Respiratorio
5.
Cancer Res ; 78(19): 5668-5679, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30115694

RESUMEN

In human cancers, FGFR signaling is frequently hyperactivated by deregulation of FGF ligands or by activating mutations in the FGFR receptors such as gene amplifications, point mutations, and gene fusions. As such, FGFR inhibitors are considered an attractive therapeutic strategy for patients with mutations in FGFR family members. We previously identified Fgfr2 as a key driver of invasive lobular carcinoma (ILC) in an in vivo insertional mutagenesis screen using the Sleeping Beauty transposon system. Here we explore whether these FGFR-driven ILCs are sensitive to the FGFR inhibitor AZD4547 and use transposon mutagenesis in these tumors to identify potential mechanisms of resistance to therapy. Combined with RNA sequencing-based analyses of AZD4547-resistant tumors, our in vivo approach identified several known and novel potential resistance mechanisms to FGFR inhibition, most of which converged on reactivation of the canonical MAPK-ERK signaling cascade. Observed resistance mechanisms included mutations in the tyrosine kinase domain of FGFR2, overexpression of MET, inactivation of RASA1, and activation of the drug-efflux transporter ABCG2. ABCG2 and RASA1 were identified only from de novo transposon insertions acquired during AZD4547 treatment, demonstrating that insertional mutagenesis in mice is an effective tool for identifying potential mechanisms of resistance to targeted cancer therapies.Significance: These findings demonstrate that a combined approach of transcriptomics and insertional mutagenesis in vivo is an effective method for identifying potential targets to overcome resistance to therapy in the clinic. Cancer Res; 78(19); 5668-79. ©2018 AACR.


Asunto(s)
Benzamidas/química , Elementos Transponibles de ADN , Resistencia a Antineoplásicos , Mutagénesis , Piperazinas/química , Pirazoles/química , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Animales , Carcinoma Lobular/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Amplificación de Genes , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Mutación , Invasividad Neoplásica , Proteínas de Neoplasias/metabolismo , Trasplante de Neoplasias , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Análisis de Secuencia de ARN , Transcriptoma , Proteína Activadora de GTPasa p120/metabolismo
6.
FEBS Lett ; 590(4): 482-92, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26900081

RESUMEN

Multidrug resistance-associated proteins (MRP) of Plasmodium falciparum have been associated with altered drug sensitivity. Knowledge on MRP substrate specificity is indispensible for the characterization of resistance mechanisms and identifying its physiological roles. An untargeted metabolomics approach detected decreased folate concentrations in red blood cells infected with schizont stage parasites lacking expression of MRP1. Furthermore, a tenfold decrease in sensitivity toward the folate analog methotrexate was detected for parasites lacking MRP1. PfMRP1 is involved in the export of folate from parasites into red blood cells and is therefore a relevant factor for efficient malaria treatment through the folate pathway.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Múltiples Medicamentos , Antagonistas del Ácido Fólico/farmacología , Ácido Fólico/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Antimaláricos/química , Transporte Biológico , Eritrocitos/metabolismo , Eritrocitos/parasitología , Antagonistas del Ácido Fólico/química , Técnicas de Inactivación de Genes , Humanos , Metabolómica , Metotrexato/química , Metotrexato/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda