Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Am Chem Soc ; 146(32): 22807-22817, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39091220

RESUMEN

In this study, we synthesized a series of Ga1.98-xInxO3:0.02Cr3+ materials with varying x values from 0.0 to 1.0, focusing on their broadband near-infrared emission and photoelectric properties. Interestingly, photocurrent excitation spectra exhibited behavior consistent with the absorption spectra, indicating the promotion of carriers into the band structure by the 4T1, and 4T2 states of Cr3+ ions. This association suggests that photocurrent in this material is influenced not only by valence to conduction band transitions but also by transitions involving Cr3+ dopants. Our investigation of luminescence quenching mechanisms revealed that nonradiative processes were not directly linked to thermally induced relaxation from the excited state 4T2 to the ground state 4A2, as usually suggested in the literature for this type of material. Instead, we linked it to the thermal ionization of Cr3+ ions. Unexpectedly, this process is unrelated to the transfer of electrons from Cr3+ impurities to the conduction band but is associated with the formation of holes in the valence band. This study provided novel evidence of luminescence quenching via the hole-type thermal quenching process in Cr3+-doped oxides, suggesting potential applicability to other transition metal ions and host materials. Finally, we demonstrated the dual-purpose nature of Ga1.98-xInxO3:0.02Cr3+ as a practical emitter for NIR-pc-LEDs and effective photocurrent for UV detectors. This versatility underscores these materials' practicality and broad application potential in optoelectronic devices designed for near-infrared and ultraviolet applications.

2.
Molecules ; 29(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39274843

RESUMEN

The growing production and use of plastics significantly contribute to microplastics (MPs) contamination in the environment. Humans are exposed to MPs primarily through the gastrointestinal route, as these particles are present in beverages and food, e.g., sugar. Effective isolation and identification of MPs from food is essential for their elimination. This study aimed to evaluate factors influencing the isolation of MPs from sucrose solutions to determine optimal conditions for the process. Polyethylene particles were used to test separation methods involving chemical digestion with acids and filtration through membrane filters made of nylon, mixed cellulose ester, and cellulose acetate with pore sizes of 0.8 and 10 µm. The effects of temperature and acid type and its concentration on plastic particles were examined using scanning electron microscopy and µ-Raman spectroscopy. The results indicate that increased temperature reduces solution viscosity and sucrose adherence to MPs' particles, while higher acid concentrations accelerate sucrose hydrolysis. The optimal conditions for MPs' isolation were found to be 5% HCl at 70 °C for 5 min, followed by filtration using an efficient membrane system. These conditions ensure a high recovery and fast filtration without altering MPs' surface properties, providing a reliable basis for further analysis of MPs in food.


Asunto(s)
Microplásticos , Sacarosa , Sacarosa/química , Microplásticos/química , Microplásticos/análisis , Filtración/métodos , Temperatura , Polietileno/química , Viscosidad
3.
Angew Chem Int Ed Engl ; : e202412815, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117561

RESUMEN

Near-infrared (NIR) emitting phosphors draw much attention because they show great applicability and development prospects in many fields. Herein, a series of inverse spinel-type structured LiGa5O8 phosphors with a high concentration of Cr3+ activators is reported with a dual emission band covering NIR-I and II regions. Except for strong ionic exchange interactions such as Cr3+-Cr3+ and Cr3+ clusters, an intervalence charge transfer (IVCT) process between aggregated Cr ion pairs is proposed as the mechanism for the ~1210 nm NIR-II emission. Comprehensive structural and luminescence characterization points to IVCT between two Cr3+ being induced by structural distortion and further enhanced by irradiation. Construction of the configurational energy level diagram enabled elucidation of this transition within the IVCT process. Therefore, this work provides insight into the emission mechanism within the high Cr3+ concentration system, revealing a new design strategy for NIR-II emitting phosphors to promote its response.

4.
Phys Chem Chem Phys ; 25(29): 19713-19718, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37439020

RESUMEN

CuLaO2 is a rare-earth and dopant-free inorganic compound able to emit green light upon blue excitation. Its absorption amounts to 90% but its internal quantum efficiency is poor (<17%). The origin of this deleterious radiationless behavior is addressed by investigating the spectroscopic properties of this compound under the action of temperature and hydrostatic pressure in the 15-400 K and 1 bar-40 kbar intervals, and by combining the spectroscopic data with earlier results of DFT calculations. A two-step radiationless process is demonstrated, involving radiative re-absorption and cross-over to excitonic states.

5.
Inorg Chem ; 61(5): 2595-2602, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35061382

RESUMEN

Organic-inorganic hybrid metal halides have recently attracted attention in the global research field for their bright light emission, tunable photoluminescence wavelength, and convenient synthesis method. This study reports the detailed properties of (C10H16N)2MnBr4, which emits bright green light with a high photoluminescence quantum yield. Results of powder X-ray diffraction, photoluminescence, thermogravimetric analysis, and Raman spectra show the phase transition of (C10H16N)2MnBr4 at 430 K. This phase transition was identified as the solid to liquid state of (C10H16N)2MnBr4. Moreover, the pressure- and temperature-induced relationship between structural and optical properties in (C10H16N)2MnBr4 can be identified. This investigation provides deep insights into the luminescent properties of metal halide crystals and promotes further research.

6.
J Am Chem Soc ; 143(45): 19058-19066, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34735772

RESUMEN

Portable near-infrared (NIR) light sources are in high demand for applications in spectroscopy, night vision, bioimaging, and many others. Typical phosphor designs feature isolated Cr3+ ion centers, and it is challenging to design broadband NIR phosphors based on Cr3+-Cr3+ pairs. Here, we explore the solid-solution series SrAl11.88-xGaxO19:0.12Cr3+ (x = 0, 2, 4, 6, 8, 10, and 12) as phosphors featuring Cr3+-Cr3+ pairs and evaluate structure-property relations within the series. We establish the incorporation of Ga within the magentoplumbite-type structure at five distinct crystallographic sites and evaluate the effect of this incorporation on the Cr3+-Cr3+ ion pair proximity. Electron paramagnetic measurements reveal the presence of both isolated Cr3+ and Cr3+-Cr3+ pairs, resulting in NIR luminescence at approximately 650-1050 nm. Unexpectedly, the origin of broadband NIR luminescence with a peak within the range 740-820 nm is related to the Cr3+-Cr3+ ion pair. We demonstrate the application of the SrAl5.88Ga6O19:0.12Cr3+ phosphor, which possesses an internal quantum efficiency of ∼85%, a radiant flux of ∼95 mW, and zero thermal quenching up to 500 K. This work provides a further understanding of spectral shifts in phosphor solid solutions and in particular the application of the magentoplumbites as promising next-generation NIR phosphor host systems.

7.
Inorg Chem ; 59(1): 376-385, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31823613

RESUMEN

Two types of infrared fluoride phosphors, Cr3+-doped K3AlF6 and K3GaF6, were developed in this research. The K3Al1-xF6:xCr3+ and K3Ga1-yF6:yCr3+ fluoride phosphors were proven to be pure phase via X-ray diffraction refinement, which demonstrated that the procedure can be applied to large-scale production. Electron paramagnetic resonance measurements indicated that Cr3+ ions in cubic with respect to noncubic are coupled better with K3GaF6 than with K3AlF6. The main differences between these two phosphors, the site symmetry and pressure behavior of the spectra, were obtained in temperature- and pressure-dependent spectra. According to the calculation results, Cr3+ in fluorine coordination at ambient pressure indicates an intermediate crystal field. For the phosphor-converted light-emitting diodes (LEDs) fabricated from these two phosphors, the spectral range is from 650 to 1000 nm, which resulted in a radiant flux of 7-8 mW with an input power of 1.05 W. The research reveals detailed luminous properties, which will lead to a new way of studying Cr3+-doped fluoride phosphors and their application in LEDs.

8.
Inorg Chem ; 59(20): 15101-15110, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32998510

RESUMEN

Near-infrared (NIR) phosphors are fascinating materials that have numerous applications in diverse fields. In this study, a series of La3Ga5GeO14:Cr3+ phosphors, which was incorporated with Sn4+, Ba2+, and Sc3+, was successfully synthesized using solid-state reaction to explore every cationic site comprehensively. The crystal structures were well resolved by combining synchrotron X-ray diffraction and neutron powder diffraction through joint Rietveld refinements. The trapping of free electrons induced by charge unbalances and lattice vacancies changes the magnetic properties, which was well explained by a Dyson curve in electron paramagnetic resonance. Temperature and pressure-dependent photoluminescence spectra reveal various luminescent properties between strong and weak fields in different dopant centers. The phosphor-converted NIR light-emitting diode (pc-NIR LED) package demonstrates a superior broadband emission that covers the near-infrared (NIR) region of 650-1050 nm. This study can provide researchers with new insight into the control mechanism of multiple-cation-site phosphors and reveal a potential phosphor candidate for practical NIR LED application.

9.
Phys Chem Chem Phys ; 22(30): 17152-17159, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32692338

RESUMEN

The process of persistent luminescence or glow-in-the-dark, the delayed emission of light of irradiated substances, has long fascinated researchers, who have made efforts to explain the underlying physical phenomenon as well as put it to practical use. However, persistent luminescence is an elusive and difficult process, both in terms of controlling or altering its properties, as well as providing a quantitative description. In this paper, we used SrSi2N2O2:Eu2+ as a model persistent phosphor, characterized by the broad distribution of structural defects and exhibiting long-lasting Eu2+ luminescence that is visible for a few minutes after switching off UV light. We investigated the persistent luminescence process by two complementary methods, namely, thermoluminescence and temperature-dependent persistent luminescence decay measurements. Analysis of experimental data allowed us to determine the depth distribution of traps, and allowed us to distinguish two different mechanisms by which the emission is delayed. The first, the temperature-dependent mechanism, is related to trap activation, while the second, temperature-independent mechanism is related to carrier migration. Finally, we employed the strategy of the co-doping of the phosphor SrSi2N2O2:Eu2+,M3+ (M = Ce, Nd, Dy) to modify the persistent luminescence properties.

10.
Phys Chem Chem Phys ; 21(5): 2818-2820, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34661586

RESUMEN

New results presented by Wang et al. showing the temperature dependence of the Y3Ga5O12:Ce3+ energy bandgap have been taken into account in the calculations of the changes of the energy distance between the lowest 5d state of Ce3+ and the edge of the conduction band. Our calculations show that the diminishing of the band gap energy with temperature has a negligible effect on the difference between the energy of the conduction band and the localized states of the 5d configuration of Ce3+, which means that the new experimental results do not undermine the validity of the conclusions of our previous paper.

11.
Phys Chem Chem Phys ; 21(5): 2818-2820, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30664134

RESUMEN

New results presented by Wang et al. showing the temperature dependence of the Y3Ga5O12:Ce3+ energy bandgap have been taken into account in the calculations of the changes of the energy distance between the lowest 5d state of Ce3+ and the edge of the conduction band. Our calculations show that the diminishing of the band gap energy with temperature has a negligible effect on the difference between the energy of the conduction band and the localized states of the 5d configuration of Ce3+, which means that the new experimental results do not undermine the validity of the conclusions of our previous paper.

12.
Angew Chem Int Ed Engl ; 58(23): 7767-7772, 2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-30957924

RESUMEN

In this study, a series of Sr(LiAl3 )1-x (SiMg3 )x N4 :Eu2+ (SLA-SSM) phosphors were synthesized by a solid-solution process. The emission peak maxima of SLA-SSM range from 615 nm to 680 nm, which indicates structural differences in these materials. 7 Li solid-state NMR spectroscopy was utilized to distinguish between the Li(1)N4 and Li(2)N4 tetrahedra in SLA-SSM. Differences in the coordination environments of the two Sr sites were found which explain the unexpected luminescent properties. Three discernible morphologies were detected by scanning electron microscopy. Temperature-dependent photoluminescence and decay times were used to understand the diverse environments of europium ions in the two strontium sites Sr1 and Sr2, which also support the NMR analysis. Moreover, X-ray absorption near-edge structure studies reveal that the Eu2+ concentration in SLA-SSM is much higher than that in in SrLiAl3 N4 :Eu2+ and SrSiMg3 N4 :Eu2+ phosphors. Finally, an overall mechanism was proposed to explain the how the change in photoluminescence is controlled by the size of the coordinated cation.

13.
Phys Chem Chem Phys ; 20(15): 10266-10274, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29594305

RESUMEN

Luminescence properties of SrS:Ce pellets sintered at 1700 °C were investigated under high pressure. Two different Ce3+-related emissions were confirmed to appear in the blue-green and red parts of the spectrum and were shown to shift significantly and linearly to longer wavelengths with increasing pressure. Changes in decay times of both emissions were also thoroughly analyzed. The results confirmed that Ce3+ ion pairing/clustering occurring due to their enhanced mobility at high temperatures is responsible for the appearance of the recently reported red Ce3+ emission in sintered SrS:Ce pellets.

14.
Phys Chem Chem Phys ; 20(27): 18380-18390, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29943777

RESUMEN

In this work we present the results of photocurrent excitation spectroscopy (PCE) of Gd3Al2Ga3O12:Ce3+ (GAGG:Ce3+) and Gd3Ga5O12:Ce3+ (GGG:Ce3+) performed at temperatures ranging from 100 to 500 K supplemented by spectroscopic measurements (steady state and time resolved photoluminescence spectroscopy) performed at temperatures ranging from 10 to 500 K and at high pressure up to 300 kbar. The PCE spectra contain bands related to transitions from the ground state 2F5/2 of the 4f1 electronic configuration to the crystal field split states related to the 5d1 electronic configuration of Ce3+. This implicates the presence of the autoionization process - transfer of electrons from the localized, excited states of Ce3+ to the conduction band (CB), directly linked to luminescence quenching of Ce3+. The mechanism of autoionization of GAGG:Ce3+ and GGG:Ce3+ was determined to be different on the grounds of differences in temperature dependence of photocurrent intensity. The latter system exhibits autoionization, which occurs when all of the 5d excited states are degenerated with the CB, whereas in the former system, the autoionization process is thermally assisted with an activation energy barrier (distance to the edge of the CB) of approximately 1600 cm-1. In GGG:Ce3+ the degeneracy of 5d1 states of Ce3+ was lifted by application of high pressure, shifting the edge of the CB up and exposing Ce3+ luminescence at 20 kbar. Further spectroscopic analyses of the pressure-temperature dependence of the luminescence decay time as well as the temperature dependence of photocurrent intensity of GGG:Ce3+ have independently shown existence of a luminescence quenching state located approximately 600 cm-1 below the CB, attributed to the impurity trapped exciton.

15.
Angew Chem Int Ed Engl ; 57(7): 1797-1801, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29266619

RESUMEN

Mn4+ -doped fluoride phosphors have been widely used in wide-gamut backlighting devices because of their extremely narrow emission band. Solid solutions of Na2 (Six Ge1-x )F6 :Mn4+ and Na2 (Gey Ti1-y )F6 :Mn4+ were successfully synthesized to elucidate the behavior of the zero-phonon line (ZPL) in different structures. The ratio between ZPL and the highest emission intensity υ6 phonon sideband exhibits a strong relationship with luminescent decay rate. First-principles calculations are conducted to model the variation in the structural and electronic properties of the prepared solid solutions as a function of the composition. To compensate for the limitations of the Rietveld refinement, electron paramagnetic resonance and high-resolution steady-state emission spectra are used to confirm the diverse local environment for Mn4+ in the structure. Finally, the spectral luminous efficacy of radiation (LER) is used to reveal the important role of ZPL in practical applications.

16.
Phys Chem Chem Phys ; 19(48): 32505-32513, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29188841

RESUMEN

Temperature dependence of the luminescence shape and decay time of narrow band Mn4+ fluoride phosphors: Rb2GeF6:Mn4+ and KNaSiF6:Mn4+ was investigated. The temperature changes in the relative intensity between the zero-phonon line and both phonon sidebands were observed in both samples. The sideband spectra consist of three lines related to interaction with three different phonon modes labeled ν3, ν4 and ν6. We present a comprehensive quantum theory which allows calculation of the luminescence intensity and the luminescence lifetime by simultaneously taking into account odd parity crystal fields, odd parity phonon modes and spin-orbit coupling. Since we include all modes, for which the respective interaction strengths and energies of the phonons are known, our approach does not involve any free parameters. We also discuss our results in relation to the temperature dependence of the lifetime of the 2Eg → 4A2g transition, taking into account the quantum efficiency of the system and the migration of the excitation energy. The presented model is applicable to all materials doped with Mn4+ ions and also to any narrow line emitting phosphor, where a zero-phonon line and phonon structure is simultaneously observed in the emission spectrum.

17.
Angew Chem Int Ed Engl ; 55(33): 9652-6, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27377167

RESUMEN

A SrLiAl3 N4 :Eu(2+) (SLA) red phosphor prepared through a high-pressure solid-state reaction was coated with an organosilica layer with a thickness of 400-600 nm to improve its water resistance. The observed 4f(6) 5d→4f(7) transition bands are thought to result from the existence of Eu(2+) at two different Sr(2+) sites. Luminescence spectra at 10 K revealed two zero-phonon lines at 15377 (for Eu(Sr1)) and 15780 cm(-1) (for Eu(Sr2)). The phosphor exhibited stable red emission under high pressure up to 312 kbar. The configurational coordinate diagram gave a theoretical explanation for the Eu(2+/3+) result. The coated samples showed excellent moisture resistance while retaining an external quantum efficiency (EQE) of 70 % of their initial EQE after aging for 5 days under harsh conditions. White-light-emitting diodes of the SLA red phosphor and a commercial Y3 Al5 O12 :Ce(3+) yellow phosphor on a blue InGaN chip showed high color rendition (CRI=89, R9=69) and a low correlated color temperature of 2406 K.

18.
Food Chem ; 440: 138246, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154286

RESUMEN

Microplastics (MPs) are plastic particles between 0.1 and 5,000 µm in size that can contaminate food. Unfortunately, to date, little attention has been paid to analyzing the presence of such particles in baby foods. The present study aimed to determine the degree of contamination of infant formula with MPs. A total of thirty products were subjected to analysis. The research methodology used included the isolation of plastic particles, identification and characterization of MPs using advanced microscopic and spectroscopic techniques. Microplastics were detected in all tested samples. The most frequently identified polymers were polyamide, polyethylene, polypropylene, and poly(ethylene terephthalate). The particles exhibited diverse forms, including fibers, fragments, and films, displaying a range of colors such as colorless, black, and brown particles. Furthermore, the daily intake of MPs by children fed exclusively infant formula was estimated to be approximately 49 ± 32 MPs. This poses a potential health risk for the youngest.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Niño , Humanos , Microplásticos/análisis , Plásticos , Fórmulas Infantiles/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
19.
Mater Horiz ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258886

RESUMEN

Accurate, rapid, and remote detection of pressure, one of the fundamental physical parameters, is vital for scientific, industrial, and daily life purposes. However, due to the limited sensitivity of luminescent manometers, the optical pressure monitoring has been applied mainly in scientific studies. Here, we developed the first supersensitive optical pressure sensor based on the exciton-type luminescence of the Bi3+-doped, double perovskite material Cs2Ag0.6Na0.4InCl6. The designed luminescent manometer exhibits an extremely high sensitivity, i.e. dλ/dp = 112 nm GPa-1. It also allows multi-parameter sensing, using both blue-shift and rarely observed band narrowing with pressure. Importantly, this material has small temperature dependence for the manometric parameter used, i.e. spectral shift, allowing detection under extreme pressure and temperature conditions. The developed sensor operates in the visible range, and its emission shifts from orange to blue with pressure. This approach allowed us to demonstrate the real-world application of this sensor in detecting small changes in pressure with a designed uniaxial pressure device, with unprecedented resolution of the order of a few bars, demonstrating the technological potential of this sensor for remote, online monitoring of cracks and strains in heavy construction facilities.

20.
ACS Appl Mater Interfaces ; 15(42): 49379-49389, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37842834

RESUMEN

Cr-doped inorganic materials are pivotal in developing near-infrared optical materials; however, multivalent Cr ions and their respective distribution in the materials remain ambiguous. Herein, a series of Li(Sc1-xInx)O2:Cr phosphors containing both Cr3+/Cr6+ ions are prepared. High-resolution synchrotron X-ray diffraction (XRD) reveals two similar phases in Li(Sc1-xInx)O2. Raman spectra further confirm distinct scattering patterns for the two end-member compositions, corroborating the findings from the synchrotron XRD analysis. Cr K-edge X-ray absorption near-edge structure and extended X-ray absorption fine structure demonstrate that most Cr ions in the as-prepared samples are Cr6+, while Cr3+ becomes dominant after washing with water. Moreover, the source and distribution of Cr3+ and Cr6+ ions in the as-prepared and washed samples are revealed through X-ray fluorescence and X-ray excited optical luminescence techniques, which indicate that Cr6+ ions aggregate within the sample, while Cr3+ ions are evenly distributed. Photoluminescence, decay curves, and line shape analyses are implemented to resolve the electron-lattice interactions, and the corresponding mechanisms are provided to explain the asymmetry between photoluminescence and photoluminescence excitation spectra. Overall, this study provides valuable insights into the distribution of low-concentration multivalence ions in solid-state materials and offers a deeper understanding of the approaches to precisely resolve the subtle changes in the crystal structure.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda