RESUMEN
We report on measurements of the ionization and fragmentation of polycyclic aromatic hydrocarbon (PAH) targets in Xe(20+) + C(16)H(10) and Xe(20+) + [C(16)H(10)](k) collisions and compare results for the two C(16)H(10) isomers: pyrene and fluoranthene. For both types of targets, i.e., for single PAH molecules isolated in vacuum or for isomerically pure clusters of one of the molecules, the resulting fragment spectra are surprisingly similar. However, we do observe weak but significant isomer effects. Although these are manifested in very different ways for the monomer and cluster targets, they both have at their roots small differences (<2.5 eV) between the total binding energies of neutral, and singly and multiply charged pyrene and fluoranthene monomers. The results will be discussed in view of the density functional theory calculations of ionization and dissociation energies for fluoranthene and pyrene. A simple classical over-the-barrier model is used to estimate cross sections for single- and multiple-electron transfer between PAHs and ions. Calculated single and multiple ionization energies, and the corresponding model PAH ionization cross sections, are given.
RESUMEN
The CEA operates several High-Pulsed Power (HPP) drivers for dynamic loading experiments. The aim of these experiments is to provide quantitative information about the response of various materials of interest, mainly under quasi-isentropic compression. In order to improve our ability to explore these materials' behavior over a wide range of thermodynamic paths and starting from various non-ambient conditions, we developed a device capable of pre-heating both metallic and nonmetallic samples up to several hundred degrees prior to loading. This device is based on conductive heating and on a configuration that allows homogeneous heating with unprecedented temperature stability on our HPP platforms. Moreover, it is designed to allow efficient sample heating, within extremely severe electromagnetic environments associated with such platforms. The main features of this preheating device, whose design was guided by extensive thermal simulations, are presented, along with various technical solutions that enabled its insertion in a reliable experimental configuration on our HPP drivers. The results obtained from preliminary experiments on a composite material (carbon fibers embedded in epoxy resin) and on a high purity copper sample preheated to 323 K and 573 K, respectively, are presented. The performance and robustness of this heating device are potentially valuable for extending the range of studies in dynamic loading experiments for various materials under ramp compression using HPP drivers.
RESUMEN
We report the first experimental study of ions interacting with clusters of polycyclic aromatic hydrocarbon (PAH) molecules. Collisions between 11.25 keV 3He+ or 360 keV 129Xe20+ and weakly bound clusters of one of the smallest PAH molecules, anthracene, show that C14H10 clusters have much higher tendencies to fragment in ion collisions than other weakly bound clusters. The ionization is dominated by peripheral collisions in which the clusters, very surprisingly, are more strongly heated by Xe20+ collisions than by He+ collisions. The appearance size is k=15 for [C 14H10](k)2+.