Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34376558

RESUMEN

The mechanosensitive channel of small conductance (MscS) protects bacteria against hypoosmotic shock. It can sense the tension in the surrounding membrane and releases solutes if the pressure in the cell is getting too high. The membrane contacts MscS at sensor paddles, but lipids also leave the membrane and move along grooves between the paddles to reside as far as 15 Å away from the membrane in hydrophobic pockets. One sensing model suggests that a higher tension pulls lipids from the grooves back to the membrane, which triggers gating. However, it is still unclear to what degree this model accounts for sensing and what contribution the direct interaction of the membrane with the channel has. Here, we show that MscS opens when it is sufficiently delipidated by incubation with the detergent dodecyl-ß-maltoside or the branched detergent lauryl maltose neopentyl glycol. After addition of detergent-solubilized lipids, it closes again. These results support the model that lipid extrusion causes gating: Lipids are slowly removed from the grooves and pockets by the incubation with detergent, which triggers opening. Addition of lipids in micelles allows lipids to migrate back into the pockets, which closes the channel even in the absence of a membrane. Based on the distribution of the aliphatic chains in the open and closed conformation, we propose that during gating, lipids leave the complex on the cytosolic leaflet at the height of highest lateral tension, while on the periplasmic side, lipids flow into gaps, which open between transmembrane helices.


Asunto(s)
Membrana Celular/fisiología , Activación del Canal Iónico/fisiología , Metabolismo de los Lípidos , Mecanotransducción Celular/fisiología , Dominio Catalítico , Lípidos/química , Modelos Moleculares , Presión Osmótica , Conformación Proteica
2.
Proteins ; 89(12): 1647-1672, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34561912

RESUMEN

The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Biología Computacional , Microscopía por Crioelectrón , Cristalografía por Rayos X , Análisis de Secuencia de Proteína
3.
Biol Chem ; 398(5-6): 701-707, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28141542

RESUMEN

Ras-mediated apoptotic signaling is expected to be mediated via Rassf-MST complexes, but the system has been poorly characterized in vitro until now. Here we demonstrate that active H-Ras, Nore1A and MST1 form a stable ternary complex in vitro without other external factors, Nore1A interacting simultaneously with H-Ras and MST1 via its RBD and SARAH domain, respectively. Moreover, our data show for the first time that the SARAH domain of Nore1A plays a role in the Nore1A binding to H-Ras. Finally, we analyze the relation between the electrostatic and hydrophobic forces and kinetic constants of the Nore1A - H-Ras complex.


Asunto(s)
Apoptosis , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas ras/metabolismo , Cinética , Transducción de Señal
4.
Biochemistry ; 52(6): 1045-54, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23331050

RESUMEN

Tumor suppressor Nore1, its acronym coming from novel Ras effector, is one of the 10 members of the Rassf (Ras association domain family) protein family that have been identified. It is expressed as two mRNA splice variants, Nore1A and a shorter isoform, Nore1B. It forms homo- and heterocomplexes through its C-terminal SARAH (Sav/Rassf/Hpo) domain. The oligomeric state of Nore1 and other SARAH domain-containing proteins is important for their cellular activities. However, there are few experimental data addressing the structural and biophysical characterization of these domains. In this study, we show that the recombinant SARAH domain of Nore1 crystallizes as an antiparallel homodimer with representative characteristics of coiled coils. As is typical for coiled coils, the SARAH domain shows a heptad register, yet the heptad register is interrupted by two stutters. The comparisons of the heptad register of Nore1-SARAH with the primary structure of Rassf1-4, Rassf6, MST1, MST2, and WW45 indicate that these proteins have a heptad register interrupted by two stutters, too. Moreover, on the basis of the structure of Nore1-SARAH, we also generate structural models for Rassf1 and Rassf3. These models indicate that Rassf1- and Rassf3-SARAH form structures very similar to that of Nore1-SARAH. In addition, we show that, as we have previously found for MST1, the SARAH domain of Nore1 undergoes association-dependent folding. Nevertheless, the Nore1 homodimer has a lower affinity and thermodynamic stability than the MST1 homodimer, while the monomer is slightly more stable. Our experimental results along with our theoretical considerations indicate that the SARAH domain is merely a dimerization domain and that the differences between the individual sequences lead to different stabilities and affinities that might have an important functional role.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas de Ciclo Celular/química , Factor de Crecimiento de Hepatocito/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Proto-Oncogénicas/química , Proteínas Supresoras de Tumor/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas de Ciclo Celular/metabolismo , Dicroismo Circular , Dimerización , Factor de Crecimiento de Hepatocito/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/metabolismo , Homología de Secuencia de Aminoácido , Serina-Treonina Quinasa 3 , Transducción de Señal , Termodinámica , Proteínas Supresoras de Tumor/metabolismo
5.
Biochemistry ; 50(51): 10990-1000, 2011 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-22112013

RESUMEN

The serine/threonine mammalian sterile 20-like kinase (MST1) is involved in promotion of caspase-dependent and independent apoptosis. Phosphorylation and oligomerization are required for its activation. The oligomerization domain, denoted as SARAH domain, forms an antiparallel coiled coil dimer, and it is important for both MST1 autophosphorylation and interactions with other proteins like the Rassf proteins containing also a SARAH domain. Here we show that the monomeric state of SARAH is thermodynamically unstable and that homodimerization is coupled with folding. Moreover, the influence of the inhibitory domain on SARAH stability and affinity is addressed. By investigating the thermal denaturation using differential scanning calorimetry and circular dichroism, we have found that the SARAH domain dissociates and unfolds cooperatively, without a stable intermediate monomeric state. Combining the data with information from isothermal titration calorimetry, a low thermodynamic stability of the monomeric species is obtained. Thus, it is proposed that the transition from MST1 SARAH homodimer to some specific heterodimer implies a non-native monomer intermediate. The inhibitory domain is found to be highly flexible and intrinsically unfolded, not only in isolation but also in the dimeric state of the inhibitory-SARAH construct. The existence of two caspase recognition motifs within the inhibitory domain suggests that its structural flexibility might be important for activation of MST1 during apoptosis. Moreover, the inhibitory domain increases the thermodynamic stability of the SARAH dimer and the homodimer affinity, while having almost no effect on the SARAH domain in the monomeric state. These results emphasize the importance of flexibility and binding-induced folding for specificity, affinity, and the capacity to switch from one state to another.


Asunto(s)
Dimerización , Factor de Crecimiento de Hepatocito/química , Pliegue de Proteína , Proteínas Proto-Oncogénicas/química , Algoritmos , Calorimetría , Rastreo Diferencial de Calorimetría , Caspasas/metabolismo , Dicroismo Circular , Reactivos de Enlaces Cruzados/química , Estabilidad de Enzimas , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Modelos Moleculares , Nefelometría y Turbidimetría , Concentración Osmolar , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Desnaturalización Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Termodinámica
6.
Microorganisms ; 9(5)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946808

RESUMEN

Hepatitis B virus is a major human pathogen, which forms enveloped virus particles. During viral maturation, membrane-bound hepatitis B surface proteins package hepatitis B core protein capsids. This process is intercepted by certain peptides with an "LLGRMKG" motif that binds to the capsids at the tips of dimeric spikes. With microcalorimetry, electron cryo microscopy and peptide microarray-based screens, we have characterized the structural and thermodynamic properties of peptide binding to hepatitis B core protein capsids with different secretion phenotypes. The peptide "GSLLGRMKGA" binds weakly to hepatitis B core protein capsids and mutant capsids with a premature (F97L) or low-secretion phenotype (L60V and P5T). With electron cryo microscopy, we provide novel structures for L60V and P5T and demonstrate that binding occurs at the tips of the spikes at the dimer interface, splaying the helices apart independent of the secretion phenotype. Peptide array screening identifies "SLLGRM" as the core binding motif. This shortened motif binds only to one of the two spikes in the asymmetric unit of the capsid and induces a much smaller conformational change. Altogether, these comprehensive studies suggest that the tips of the spikes act as an autonomous binding platform that is unaffected by mutations that affect secretion phenotypes.

7.
Viruses ; 13(11)2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34834922

RESUMEN

(1) Background: During maturation of the Hepatitis B virus, a viral polymerase inside the capsid transcribes a pre-genomic RNA into a partly double stranded DNA-genome. This is followed by envelopment with surface proteins inserted into a membrane. Envelopment is hypothetically regulated by a structural signal that reports the maturation state of the genome. NMR data suggest that such a signal can be mimicked by the binding of the detergent Triton X 100 to hydrophobic pockets in the capsid spikes. (2) Methods: We have used electron cryo-microscopy and image processing to elucidate the structural changes that are concomitant with the binding of Triton X 100. (3) Results: Our maps show that Triton X 100 binds with its hydrophobic head group inside the pocket. The hydrophilic tail delineates the outside of the spike and is coordinated via Lys-96. The binding of Triton X 100 changes the rotamer conformation of Phe-97 in helix 4, which enables a π-stacking interaction with Trp-62 in helix 3. Similar changes occur in mutants with low secretion phenotypes (P5T and L60V) and in a mutant with a pre-mature secretion phenotype (F97L). (4) Conclusion: Binding of Triton X 100 is unlikely to mimic structural maturation because mutants with different secretion phenotypes show similar structural responses.


Asunto(s)
Cápside/química , Virus de la Hepatitis B/metabolismo , Hepatitis B/virología , Fenilalanina/química , Secuencias de Aminoácidos , Cápside/metabolismo , ADN Viral/química , ADN Viral/genética , ADN Viral/metabolismo , Antígenos del Núcleo de la Hepatitis B/química , Antígenos del Núcleo de la Hepatitis B/genética , Antígenos del Núcleo de la Hepatitis B/metabolismo , Virus de la Hepatitis B/química , Virus de la Hepatitis B/genética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fenilalanina/genética , Fenilalanina/metabolismo , Virión/química , Virión/genética , Virión/metabolismo
8.
Elife ; 92020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32795390

RESUMEN

Hepatitis B virus (HBV) is an important but difficult to study human pathogen. Most basics of the hepadnaviral life-cycle were unraveled using duck HBV (DHBV) as a model although DHBV has a capsid protein (CP) comprising ~260 rather than ~180 amino acids. Here we present high-resolution structures of several DHBV capsid-like particles (CLPs) determined by electron cryo-microscopy. As for HBV, DHBV CLPs consist of a dimeric α-helical frame-work with protruding spikes at the dimer interface. A fundamental new feature is a ~ 45 amino acid proline-rich extension in each monomer replacing the tip of the spikes in HBV CP. In vitro, folding of the extension takes months, implying a catalyzed process in vivo. DHBc variants lacking a folding-proficient extension produced regular CLPs in bacteria but failed to form stable nucleocapsids in hepatoma cells. We propose that the extension domain acts as a conformational switch with differential response options during viral infection.


Asunto(s)
Proteínas de la Cápside/química , Virus de la Hepatitis B del Pato/química , Pliegue de Proteína , Secuencia de Aminoácidos , Animales , Línea Celular , Pollos , Microscopía por Crioelectrón , Patos/virología , Virus de la Hepatitis B del Pato/genética , Modelos Moleculares , Nucleocápside/metabolismo , Estructura Secundaria de Proteína , Replicación Viral
9.
Ultramicroscopy ; 203: 145-154, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30738626

RESUMEN

Direct electron detectors are an essential asset for the resolution revolution in electron cryo microscopy of biological objects. The direct detectors provide two modes of data acquisition; the counting mode in which single electrons are counted, and the integrating mode in which the signal that arises from the incident electrons is integrated. While counting mode leads to far higher detective quantum efficiency at all spatial frequencies, the integrating mode enables faster data acquisition at higher exposure rates. For optimal throughput at best possible resolution it is important to understand when the better performance in counting mode becomes essential for solving a structure and when the lower detective quantum efficiency in integrating mode can be compensated by increasing the number of particles in the data set. Here, we provide a case study of the Falcon III camera, which has counting mode capability at exposure rates of <0.9 e-/Px² and integrating mode capability at exposure rates above 10 e-/Px². We found that counting mode gives better resolution for medium sized complexes such as the ß-galactosidase (465 kDa) (2.2 Å, 97% of Nyquist vs. 2.4 Å, 89% of Nyquist) with data sets of similar size. However, for larger particles such as Hepatitis B virus capsid like particles (4.8 MDa) we did not find any resolution gain in counting mode.


Asunto(s)
Microscopía por Crioelectrón/instrumentación , Microscopía por Crioelectrón/métodos , Electrones , Fotones
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda