Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Biol Pharm Bull ; 46(2): 359-363, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36724966

RESUMEN

Amyloid ß (Aß) plays a key role in the pathology of Alzheimer's disease (AD) and is toxic owing to its ability to aggregate into oligomers and fibrils. Aß has high aggregative ability and potent toxicity due to the "toxic turn" at positions 22 and 23. Furthermore, APP knock-in mice producing E22P-Aß with the toxic turn exhibited AD-related phenotypes such as cognitive impairment, Aß plaque accumulation, and tau hyperphosphorylation. In these mice, it is suggested that the activation of neuroinflammation and dysregulation of hypoxia-inducible factor (HIF) expression in the hippocampus contribute to the pathogenesis of AD-related phenotype. However, it remains unclear which cells are responsible for the dysregulation of HIF expression and the neuroinflammation which was induced by E22P-Aß with the toxic turn. Here, we investigated the effects of chronic treatment with E22P-Aß42 and lipopolysaccharides (LPS) on the inflammatory response in BV-2 microglia. Chronic treatment with E22P-Aß42 and LPS increased nitric oxide production and the expression of interleukin-6 (IL-6), whereas it reduced the expression of HIF-1α and HIF-3α in BV-2 microglia. The reduction of HIF-1α caused by E22P-Aß42 and LPS was milder than that caused by LPS. Furthermore, chronic treatment with E22P-Aß42 and LPS increased the nuclear translocation of nuclear factor-kappaB (NF-κB). E22P-Aß42 could enhance the inflammatory response of microglia with abnormal HIF signaling and contribute to the progression of AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Microglía , Lipopolisacáridos/toxicidad , Enfermedades Neuroinflamatorias , Enfermedad de Alzheimer/metabolismo , Hipoxia
2.
Chembiochem ; 23(8): e202200029, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35165998

RESUMEN

Amyloid ß (Aß) oligomers play a critical role in the pathology of Alzheimer's disease. Recently, we reported that a conformation-restricted Aß42 with an intramolecular disulfide bond through cysteine residues at positions 17/28 formed stable oligomers with potent cytotoxicity. To further optimize this compound as a toxic conformer model, we synthesized three analogues with a combination of cysteine and homocysteine at positions 17/28. The analogues with Cys-Cys, Cys-homoCys, or homoCys-Cys, but not the homoCys-homoCys analogue, exhibited potent cytotoxicity against SH-SY5Y and THP-1 cells even at 10 nM. In contrast, the cytotoxicity of conformation-restricted analogues at positions 16/29 or 18/27 was significantly weaker than that of wild-type Aß42. Furthermore, thioflavin-T assay, non-denaturing gel electrophoresis, and morphological studies suggested that the majority of these conformation-restricted analogues exists in an oligomeric state in cell culture medium, indicating that the toxic conformation of Aß42, rather than the oligomeric state, is essential to induce cytotoxicity.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/patología , Amiloide/química , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/toxicidad , Cisteína , Disulfuros/química , Humanos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/toxicidad
3.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362046

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that requires further pathological elucidation to establish effective treatment strategies. We previously showed that amyloid ß (Aß) toxic conformer with a turn at positions 22-23 is essential for forming highly toxic oligomers. In the present study, we evaluated phenotypic changes with aging in AD model AppNL-P-F/NL-P-F (NL-P-F) mice with Swedish mutation (NL), Iberian mutation (F), and mutation (P) overproducing E22P-Aß, a mimic of toxic conformer utilizing the knock-in technique. Furthermore, the role of the toxic conformer in AD pathology was investigated. NL-P-F mice produced soluble toxic conformers from an early age. They showed impaired synaptic plasticity, glial cell activation, and cognitive decline, followed by the accumulation of Aß plaques and tau hyperphosphorylation. In addition, the protein expression of hypoxia-inducible factor (HIF)-1α was increased, and gene expression of HIF-3α was decreased in NL-P-F mice. HIF dysregulation due to the production of soluble toxic conformers may be involved in AD pathology in NL-P-F mice. This study could reveal the role of a highly toxic Aß on AD pathogenesis, thereby contributing to the development of a novel therapeutic strategy targeting the toxic conformer.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Factor 1 Inducible por Hipoxia , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Ratones Transgénicos , Fenotipo , Placa Amiloide/metabolismo , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo
4.
ACS Chem Neurosci ; 13(19): 2913-2923, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36095282

RESUMEN

Since amyloid ß (Aß) oligomers are more cytotoxic than fibrils, various dimer models have been synthesized. We focused on the C-terminal region that could form a hydrophobic core in the aggregation process and identified a toxic conformer-restricted dimer model (E22P,G38DAP-Aß40 dimer) with an l,l-2,6-diaminopimelic acid linker (n = 3) at position 38, which exhibited moderate cytotoxicity. We synthesized four additional linkers (n = 2, 4, 5, 7) to determine the most appropriate distance between the two Aß40 monomers for a toxic dimer model. Each di-Fmoc-protected two-valent amino acid was synthesized from a corresponding dialdehyde or cycloalkene followed by ozonolysis, using a Horner-Wadsworth-Emmons reaction and asymmetric hydrogenation. Then, the corresponding Aß40 dimer models with these linkers at position 38 were synthesized using the solid-phase Fmoc strategy. Their cytotoxicity toward SH-SY5Y cells suggested that the shorter the linker length, the stronger the cytotoxicity. Particularly, the E22P,G38DAA-Aß40 dimer (n = 2) formed protofibrillar aggregates and exhibited the highest cytotoxicity, equivalent to E22P-Aß42, the most cytotoxic analogue of Aß42. Ion mobility-mass spectrometry (IM-MS) measurement indicated that all dimer models except the E22P,G38DAA-Aß40 dimer existed as stable oligomers (12-24-mer). NativePAGE analysis supported the IM-MS data, but larger oligomers (30-150-mer) were also detected after a 24 h incubation. Moreover, E22P,G38DAA-Aß40, E22P,G38DAP-Aß40, and E22P,G38DAZ-Aß40 (n = 5) dimers suppressed long-term potentiation (LTP). Overall, the ability to form fibrils with cross ß-sheet structures was key to achieving cytotoxicity, and forming stable oligomers less than 150-mer did not correlate with cytotoxicity and LTP suppression.


Asunto(s)
Enfermedad de Alzheimer , Cicloparafinas , Neuroblastoma , Ozono , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Ácido Diaminopimélico , Humanos , Fragmentos de Péptidos/metabolismo
5.
Eur J Pharmacol ; 810: 134-140, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28687195

RESUMEN

Uremic pruritus is an unpleasant symptom in patients undergoing hemodialysis, and the underlying mechanisms remain unclear. ß2-Microglobulin (ß2-MG) is well-known as an MHC class I molecule and its level is increased in the plasma of patients undergoing hemodialysis. In this study, we investigated whether ß2-MG was a pruritogen in mice. Intradermal injections of ß2-MG into the rostral back induced scratching in a dose-dependent manner. Intradermal injection of ß2-MG into the cheek also elicited scratching, but not wiping. ß2-MG-induced scratching was inhibited by the µ-opioid receptor antagonist naltrexone hydrochloride. ß2-MG-induced scratching was not inhibited by antagonists of itch-related receptors (e.g., H1 histamine receptor (terfenadine), TP thromboxane receptor (DCHCH), BLT1 leukotriene B4 receptor (CMHVA), and proteinase-activated receptor 2 (FSLLRY-NH2)). However, ß2-MG-induced scratching was attenuated in mice desensitized by repeated application of capsaicin and also by a selective transient receptor potential vanilloid 1 (TRPV1) antagonist (BCTC). In addition, ß2-MG induced phosphorylation of extracellular signal-regulated kinase (a marker of activated neurons) in primary culture of dorsal root ganglion neurons that expressed TRPV1. These results suggest that ß2-MG is a pruritogen and elicits itch-related responses, at least in part, through TRPV1-expressing primary sensory neurons.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Prurito/inducido químicamente , Prurito/metabolismo , Canales Catiónicos TRPV/metabolismo , Microglobulina beta-2/farmacología , Animales , Conducta Animal/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Ratones , Naltrexona/farmacología , Fosforilación/efectos de los fármacos , Prurito/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda