Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Psychophysiology ; 61(4): e14483, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37950391

RESUMEN

Regular participation in sports results in a series of physiological adaptations. However, little is known about the brain adaptations to physical activity. Here we aimed to investigate whether young endurance athletes and non-athletes differ in the gray and white matter of the brain and whether cardiorespiratory fitness (CRF) is associated with these differences. We assessed the CRF, volumes of the gray and white matter of the brain using structural magnetic resonance imaging (sMRI), and brain white matter connections using diffusion magnetic resonance imaging (dMRI) in 20 young male endurance athletes and 21 healthy non-athletes. While total brain volume was similar in both groups, the white matter volume was larger and the gray matter volume was smaller in the athletes compared to non-athletes. The reduction of gray matter was located in the association areas of the brain that are specialized in processing of sensory stimuli. In the microstructure analysis, significant group differences were found only in the association tracts, for example, the inferior occipito-frontal fascicle (IOFF) showing higher fractional anisotropy and lower radial diffusivity, indicating stronger myelination in this tract. Additionally, gray and white matter brain volumes, as well as association tracts correlated with CRF. No changes were observed in other brain areas or tracts. In summary, the brain signature of the endurance athlete is characterized by changes in the integration of sensory and motor information in the association areas.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Masculino , Humanos , Imagen de Difusión Tensora/métodos , Encéfalo/fisiología , Sustancia Blanca/patología , Sustancia Gris , Atletas
2.
Am J Forensic Med Pathol ; 45(2): 151-156, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38739896

RESUMEN

ABSTRACT: Autopsy followed by histopathological examination is foundational in clinical and forensic medicine for discovering and understanding pathological changes in disease, their underlying processes, and cause of death. Imaging technology has become increasingly important for advancing clinical research and practice, given its noninvasive, in vivo and ex vivo applicability. Medical and forensic autopsy can benefit greatly from advances in imaging technology that lead toward minimally invasive, whole-brain virtual autopsy. Brain autopsy followed by histopathological examination is still the hallmark for understanding disease and a fundamental modus operandi in forensic pathology and forensic medicine, despite the fact that its practice has become progressively less frequent in medical settings. This situation is especially relevant with respect to new diseases such as COVID-19 caused by the SARS-CoV-2 virus, for which our neuroanatomical knowledge is sparse. In this narrative review, we show that ad hoc clinical autopsies and histopathological analyses combined with neuroimaging of the principal circumventricular organs are critical to gaining insight into the reconstruction of the pathophysiological mechanisms and the explanation of cause of death (ie, atrium mortis) related to the cardiovascular effects of SARS-CoV-2 infection in forensic and clinical medicine.


Asunto(s)
COVID-19 , Humanos , COVID-19/patología , COVID-19/diagnóstico por imagen , Neuroimagen/métodos , Autopsia/métodos , Encéfalo/patología , Encéfalo/diagnóstico por imagen , SARS-CoV-2 , Patologia Forense/métodos , Relevancia Clínica
3.
Neuroimage ; 273: 120086, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37019346

RESUMEN

White matter fiber clustering is an important strategy for white matter parcellation, which enables quantitative analysis of brain connections in health and disease. In combination with expert neuroanatomical labeling, data-driven white matter fiber clustering is a powerful tool for creating atlases that can model white matter anatomy across individuals. While widely used fiber clustering approaches have shown good performance using classical unsupervised machine learning techniques, recent advances in deep learning reveal a promising direction toward fast and effective fiber clustering. In this work, we propose a novel deep learning framework for white matter fiber clustering, Deep Fiber Clustering (DFC), which solves the unsupervised clustering problem as a self-supervised learning task with a domain-specific pretext task to predict pairwise fiber distances. This process learns a high-dimensional embedding feature representation for each fiber, regardless of the order of fiber points reconstructed during tractography. We design a novel network architecture that represents input fibers as point clouds and allows the incorporation of additional sources of input information from gray matter parcellation. Thus, DFC makes use of combined information about white matter fiber geometry and gray matter anatomy to improve the anatomical coherence of fiber clusters. In addition, DFC conducts outlier removal naturally by rejecting fibers with low cluster assignment probability. We evaluate DFC on three independently acquired cohorts, including data from 220 individuals across genders, ages (young and elderly adults), and different health conditions (healthy control and multiple neuropsychiatric disorders). We compare DFC to several state-of-the-art white matter fiber clustering algorithms. Experimental results demonstrate superior performance of DFC in terms of cluster compactness, generalization ability, anatomical coherence, and computational efficiency.


Asunto(s)
Aprendizaje Profundo , Sustancia Blanca , Adulto , Humanos , Masculino , Femenino , Anciano , Imagen de Difusión Tensora/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/anatomía & histología , Análisis por Conglomerados , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
4.
Hum Brain Mapp ; 44(17): 6055-6073, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37792280

RESUMEN

The corticospinal tract (CST) is a critically important white matter fiber tract in the human brain that enables control of voluntary movements of the body. The CST exhibits a somatotopic organization, which means that the motor neurons that control specific body parts are arranged in order within the CST. Diffusion magnetic resonance imaging (MRI) tractography is increasingly used to study the anatomy of the CST. However, despite many advances in tractography algorithms over the past decade, modern, state-of-the-art methods still face challenges. In this study, we compare the performance of six widely used tractography methods for reconstructing the CST and its somatotopic organization. These methods include constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, unscented Kalman filter (UKF) tractography methods including multi-fiber (UKF2T) and single-fiber (UKF1T) models, the generalized q-sampling imaging (GQI) based deterministic tractography method, and the TractSeg method. We investigate CST somatotopy by dividing the CST into four subdivisions per hemisphere that originate in the leg, trunk, hand, and face areas of the primary motor cortex. A quantitative and visual comparison is performed using diffusion MRI data (N = 100 subjects) from the Human Connectome Project. Quantitative evaluations include the reconstruction rate of the eight anatomical subdivisions, the percentage of streamlines in each subdivision, and the coverage of the white matter-gray matter (WM-GM) interface. CST somatotopy is further evaluated by comparing the percentage of streamlines in each subdivision to the cortical volumes for the leg, trunk, hand, and face areas. Overall, UKF2T has the highest reconstruction rate and cortical coverage. It is the only method with a significant positive correlation between the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex. However, our experimental results show that all compared tractography methods are biased toward generating many trunk streamlines (ranging from 35.10% to 71.66% of total streamlines across methods). Furthermore, the coverage of the WM-GM interface in the largest motor area (face) is generally low (under 40%) for all compared tractography methods. Different tractography methods give conflicting results regarding the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex, indicating that there is generally no clear relationship, and that reconstruction of CST somatotopy is still a large challenge. Overall, we conclude that while current tractography methods have made progress toward the well-known challenge of improving the reconstruction of the lateral projections of the CST, the overall problem of performing a comprehensive CST reconstruction, including clinically important projections in the lateral (hand and face areas) and medial portions (leg area), remains an important challenge for diffusion MRI tractography.


Asunto(s)
Neoplasias Encefálicas , Imagen de Difusión Tensora , Humanos , Imagen de Difusión Tensora/métodos , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/patología , Imagen de Difusión por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neoplasias Encefálicas/cirugía
5.
Hum Brain Mapp ; 44(6): 2465-2478, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36744628

RESUMEN

The choroid plexus (ChP) is part of the blood-cerebrospinal fluid barrier, regulating brain homeostasis and the brain's response to peripheral events. Its upregulation and enlargement are considered essential in psychosis. However, the timing of the ChP enlargement has not been established. This study introduces a novel magnetic resonance imaging-based segmentation method to examine ChP volumes in two cohorts of individuals with psychosis. The first sample consists of 41 individuals with early course psychosis (mean duration of illness = 1.78 years) and 30 healthy individuals. The second sample consists of 30 individuals with chronic psychosis (mean duration of illness = 7.96 years) and 34 healthy individuals. We utilized manual segmentation to measure ChP volumes. We applied ANCOVAs to compare normalized ChP volumes between groups and partial correlations to investigate the relationship between ChP, LV volumes, and clinical characteristics. Our segmentation demonstrated good reliability (.87). We further showed a significant ChP volume increase in early psychosis (left: p < .00010, right: p < .00010) and a significant positive correlation between higher ChP and higher LV volumes in chronic psychosis (left: r = .54, p = .0030, right: r = .68; p < .0010). Our study suggests that ChP enlargement may be a marker of acute response around disease onset. It might also play a modulatory role in the chronic enlargement of lateral ventricles, often reported in psychosis. Future longitudinal studies should investigate the dynamics of ChP enlargement as a promising marker for novel therapeutic strategies.


Asunto(s)
Plexo Coroideo , Trastornos Psicóticos , Humanos , Plexo Coroideo/diagnóstico por imagen , Plexo Coroideo/patología , Reproducibilidad de los Resultados , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/patología , Imagen por Resonancia Magnética , Encéfalo/patología
6.
Dev Neurosci ; 45(4): 161-180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36977393

RESUMEN

A complete structural definition of the human nervous system must include delineation of its wiring diagram (e.g., Swanson LW. Brain architecture: understanding the basic plan, 2012). The complete formulation of the human brain circuit diagram (BCD [Front Neuroanat. 2020;14:18]) has been hampered by an inability to determine connections in their entirety (i.e., not only pathway stems but also origins and terminations). From a structural point of view, a neuroanatomic formulation of the BCD should include the origins and terminations of each fiber tract as well as the topographic course of the fiber tract in three dimensions. Classic neuroanatomical studies have provided trajectory information for pathway stems and their speculative origins and terminations [Dejerine J and Dejerine-Klumpke A. Anatomie des Centres Nerveux, 1901; Dejerine J and Dejerine-Klumpke A. Anatomie des Centres Nerveux: Méthodes générales d'étude-embryologie-histogénèse et histologie. Anatomie du cerveau, 1895; Ludwig E and Klingler J. Atlas cerebri humani, 1956; Makris N. Delineation of human association fiber pathways using histologic and magnetic resonance methodologies; 1999; Neuroimage. 1999 Jan;9(1):18-45]. We have summarized these studies previously [Neuroimage. 1999 Jan;9(1):18-45] and present them here in a macroscale-level human cerebral structural connectivity matrix. A matrix in the present context is an organizational construct that embodies anatomical knowledge about cortical areas and their connections. This is represented in relation to parcellation units according to the Harvard-Oxford Atlas neuroanatomical framework established by the Center for Morphometric Analysis at Massachusetts General Hospital in the early 2000s, which is based on the MRI volumetrics paradigm of Dr. Verne Caviness and colleagues [Brain Dev. 1999 Jul;21(5):289-95]. This is a classic connectional matrix based mainly on data predating the advent of DTI tractography, which we refer to as the "pre-DTI era" human structural connectivity matrix. In addition, we present representative examples that incorporate validated structural connectivity information from nonhuman primates and more recent information on human structural connectivity emerging from DTI tractography studies. We refer to this as the "DTI era" human structural connectivity matrix. This newer matrix represents a work in progress and is necessarily incomplete due to the lack of validated human connectivity findings on origins and terminations as well as pathway stems. Importantly, we use a neuroanatomical typology to characterize different types of connections in the human brain, which is critical for organizing the matrices and the prospective database. Although substantial in detail, the present matrices may be assumed to be only partially complete because the sources of data relating to human fiber system organization are limited largely to inferences from gross dissections of anatomic specimens or extrapolations of pathway tracing information from nonhuman primate experiments [Front Neuroanat. 2020;14:18, Front Neuroanat. 2022;16:1035420, and Brain Imaging Behav. 2021;15(3):1589-1621]. These matrices, which embody a systematic description of cerebral connectivity, can be used in cognitive and clinical studies in neuroscience and, importantly, to guide research efforts for further elucidating, validating, and completing the human BCD [Front Neuroanat. 2020;14:18].


Asunto(s)
Imagen de Difusión Tensora , Neurociencias , Animales , Humanos , Imagen de Difusión Tensora/métodos , Encéfalo , Imagen por Resonancia Magnética , Vías Nerviosas
7.
Cerebellum ; 22(2): 249-260, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35286708

RESUMEN

The cerebellum is ontogenetically one of the first structures to develop in the central nervous system; nevertheless, it has been only recently reconsidered for its significant neurobiological, functional, and clinical relevance in humans. Thus, it has been a relatively under-studied compared to the cerebrum. Currently, non-invasive imaging modalities can barely reach the necessary resolution to unfold its entire, convoluted surface, while only histological analyses can reveal local information at the micrometer scale. Herein, we used the BigBrain dataset to generate area and point-wise thickness measurements for all layers of the cerebellar cortex and for each lobule in particular. We found that the overall surface area of the cerebellar granular layer (including Purkinje cells) was 1,732 cm2 and the molecular layer was 1,945 cm2. The average thickness of the granular layer is 0.88 mm (± 0.83) and that of the molecular layer is 0.32 mm (± 0.08). The cerebellum (both granular and molecular layers) is thicker at the depth of the sulci and thinner at the crowns of the gyri. Globally, the granular layer is thicker in the lateral-posterior-inferior region than the medial-superior regions. The characterization of individual layers in the cerebellum achieved herein represents a stepping-stone for investigations interrelating structural and functional connectivity with cerebellar architectonics using neuroimaging, which is a matter of considerable relevance in basic and clinical neuroscience. Furthermore, these data provide templates for the construction of cerebellar topographic maps and the precise localization of structural and functional alterations in diseases affecting the cerebellum.


Asunto(s)
Corteza Cerebelosa , Cerebelo , Humanos , Corteza Cerebelosa/patología , Cerebelo/fisiología , Células de Purkinje
8.
Neuroimage ; 246: 118739, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34856375

RESUMEN

Language and theory of mind (ToM) are the cognitive capacities that allow for the successful interpretation and expression of meaning. While functional MRI investigations are able to consistently localize language and ToM to specific cortical regions, diffusion MRI investigations point to an inconsistent and sometimes overlapping set of white matter tracts associated with these two cognitive domains. To further examine the white matter tracts that may underlie these domains, we use a two-tensor tractography method to investigate the white matter microstructure of 809 participants from the Human Connectome Project. 20 association white matter tracts (10 in each hemisphere) are uniquely identified by leveraging a neuroanatomist-curated automated white matter tract atlas. The fractional anisotropy (FA), mean diffusivity (MD), and number of streamlines (NoS) are measured for each white matter tract. Performance on neuropsychological assessments of semantic memory (NIH Toolbox Picture Vocabulary Test, TPVT) and emotion perception (Penn Emotion Recognition Test, PERT) are used to measure critical subcomponents of the language and ToM networks, respectively. Regression models are constructed to examine how structural measurements of left and right white matter tracts influence performance across these two assessments. We find that semantic memory performance is influenced by the number of streamlines of the left superior longitudinal fasciculus III (SLF-III), and emotion perception performance is influenced by the number of streamlines of the right SLF-III. Additionally, we find that performance on both semantic memory & emotion perception is influenced by the FA of the left arcuate fasciculus (AF). The results point to multiple, overlapping white matter tracts that underlie the cognitive domains of language and ToM. Results are discussed in terms of hemispheric dominance and concordance with prior investigations.


Asunto(s)
Asociación , Imagen de Difusión Tensora , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen , Psicolingüística , Teoría de la Mente/fisiología , Sustancia Blanca/diagnóstico por imagen , Adulto , Conectoma , Femenino , Humanos , Masculino , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Adulto Joven
9.
Hum Brain Mapp ; 43(17): 5310-5325, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35822593

RESUMEN

White matter hyperintensities (WMH) are a typical feature of cerebral small vessel disease (CSVD), which contributes to about 50% of dementias worldwide. Microstructural alterations in deep white matter (DWM) have been widely examined in CSVD. However, little is known about abnormalities in superficial white matter (SWM) and their relevance for processing speed, the main cognitive deficit in CSVD. In 141 CSVD patients, processing speed was assessed using Trail Making Test Part A. White matter abnormalities were assessed by WMH burden (volume on T2-FLAIR) and diffusion MRI measures. SWM imaging measures had a large contribution to processing speed, despite a relatively low SWM WMH burden. Across all imaging measures, SWM free water (FW) had the strongest association with processing speed, followed by SWM mean diffusivity (MD). SWM FW was the only marker to significantly increase between two subgroups with the lowest WMH burdens. When comparing two subgroups with the highest WMH burdens, the involvement of WMH in the SWM was accompanied by significant differences in processing speed and white matter microstructure. Mediation analysis revealed that SWM FW fully mediated the association between WMH volume and processing speed, while no mediation effect of MD or DWM FW was observed. Overall, results suggest that the SWM has an important contribution to processing speed, while SWM FW is a sensitive imaging marker associated with cognition in CSVD. This study extends the current understanding of CSVD-related dysfunction and suggests that the SWM, as an understudied region, can be a potential target for monitoring pathophysiological processes.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Leucoaraiosis , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Cognición , Imagen por Resonancia Magnética
10.
J Gambl Stud ; 38(4): 1529-1537, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35596900

RESUMEN

Gambling Disorder (GD) is a condition constituting a public health concern, with a burden of harm which is much greater than that of drug addiction. Patients with GD are generally reluctant to pharmacologic treatment and seem to prefer nonpharmacological interventions. Therefore, this proof-of-concept study aimed to investigate the feasibility of continuous Theta Burst Stimulation (cTBS) on the pre-SMA in six patients (5 males, 1 female), aged 30-64 years, with a DSM-5 diagnosis of Gambling Disorder and no comorbid mood disorders. Participants received over 10 sessions of Continuous TBS (cTBS) over pre-SMA bilaterally and have been evaluated using rating scales, including the PG-YBOCS and the CGI, before treatment (T0), at day 10 of treatment (T1) and at day 30 after treatment (T2); cTBS intervention was safe and without side effects. Since the design of our study does not allow us to draw conclusions on the effectiveness of the intervention with respect to the improvement of the functioning of the subject with GD, a more in-depth study, including a sham condition, neurocognitive measures of disinhibition and decision making, and collecting follow-up data on the sustained effect of TBS over a longer period is ongoing.


Asunto(s)
Juego de Azar , Corteza Motora , Masculino , Humanos , Femenino , Estimulación Magnética Transcraneal/métodos , Corteza Motora/fisiología , Juego de Azar/psicología , Manual Diagnóstico y Estadístico de los Trastornos Mentales
11.
Neuroimage ; 234: 117977, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33757905

RESUMEN

The brain hemispheres can be divided into an upper dorsal and a lower ventral system. Each system consists of distinct cortical regions connected via long association tracts. The tracts cross the central sulcus or the limen insulae to connect the frontal lobe with the posterior brain. The dorsal stream is associated with sensorimotor mapping. The ventral stream serves structural analysis and semantics in different domains, as visual, acoustic or space processing. How does the prefrontal cortex, regarded as the platform for the highest level of integration, incorporate information from these different domains? In the current view, the ventral pathway consists of several separate tracts, related to different modalities. Originally the assumption was that the ventral path is a continuum, covering all modalities. The latter would imply a very different anatomical basis for cognitive and clinical models of processing. To further define the ventral connections, we used cutting-edge in vivo global tractography on high-resolution diffusion tensor imaging (DTI) data from 100 normal subjects from the human connectome project and ex vivo preparation of fiber bundles in the extreme capsule of 8 humans using the Klingler technique. Our data showed that ventral stream tracts, traversing through the extreme capsule, form a continuous band of fibers that fan out anteriorly to the prefrontal cortex, and posteriorly to temporal, occipital and parietal cortical regions. Introduction of additional volumes of interest in temporal and occipital lobes differentiated between the inferior fronto-occipital fascicle (IFOF) and uncinate fascicle (UF). Unequivocally, in both experiments, in all subjects a connection between the inferior frontal and middle-to-posterior temporal cortical region, otherwise known as the temporo-frontal extreme capsule fascicle (ECF) from nonhuman primate brain-tracing experiments was identified. In the human brain, this tract connects the language domains of "Broca's area" and "Wernicke's area". The differentiation in the three tracts, IFOF, UF and ECF seems arbitrary, all three pass through the extreme capsule. Our data show that the ventral pathway represents a continuum. The three tracts merge seamlessly and streamlines showed considerable overlap in their anterior and posterior course. Terminal maps identified prefrontal cortex in the frontal lobe and association cortex in temporal, occipital and parietal lobes as streamline endings. This anatomical substrate potentially facilitates the prefrontal cortex to integrate information across different domains and modalities.


Asunto(s)
Conectoma/métodos , Imagen de Difusión Tensora/métodos , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Femenino , Lóbulo Frontal/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Lóbulo Occipital/fisiología , Lóbulo Parietal/fisiología , Lóbulo Temporal/fisiología
12.
Hum Brain Mapp ; 42(11): 3561-3575, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33960558

RESUMEN

Individuals with posttraumatic stress disorder (PTSD) are at increased risk for the development of various forms of dementia. Nevertheless, the neuropathological link between PTSD and neurodegeneration remains unclear. Degeneration of the human basal forebrain constitutes a pathological hallmark of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. In this seed-based resting-state (rs-)fMRI study identifying as outcome measure the temporal BOLD signal fluctuation magnitude, a seed-to-voxel analyses assessed temporal correlations between the average BOLD signal within a bilateral whole basal forebrain region-of-interest and each whole-brain voxel among individuals with PTSD (n = 65), its dissociative subtype (PTSD+DS) (n = 38) and healthy controls (n = 46). We found that compared both with the PTSD and healthy controls groups, the PTSD+DS group exhibited increased BOLD signal variability within two nuclei of the seed region, specifically in its extended amygdaloid region: the nucleus accumbens and the sublenticular extended amygdala. This finding is provocative, because it mimics staging models of neurodegenerative diseases reporting allocation of neuropathology in early disease stages circumscribed to the basal forebrain. Here, underlying candidate etiopathogenetic mechanisms are neurovascular uncoupling, decreased connectivity in local- and large-scale neural networks, or disrupted mesolimbic dopaminergic circuitry, acting indirectly upon the basal forebrain cholinergic pathways. These abnormalities may underpin reward-related deficits representing a putative link between persistent traumatic memory in PTSD and anterograde memory deficits in neurodegeneration. Observed alterations of the basal forebrain in the dissociative subtype of PTSD point towards the urgent need for further exploration of this region as a potential candidate vulnerability mechanism for neurodegeneration in PTSD.


Asunto(s)
Prosencéfalo Basal/fisiopatología , Conectoma , Trastornos Disociativos/fisiopatología , Trastornos por Estrés Postraumático/fisiopatología , Adulto , Prosencéfalo Basal/diagnóstico por imagen , Prosencéfalo Basal/patología , Trastornos Disociativos/diagnóstico por imagen , Trastornos Disociativos/etiología , Trastornos Disociativos/patología , Humanos , Imagen por Resonancia Magnética , Trastornos por Estrés Postraumático/complicaciones , Trastornos por Estrés Postraumático/diagnóstico por imagen , Trastornos por Estrés Postraumático/patología
13.
Hum Brain Mapp ; 42(12): 3887-3904, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33978265

RESUMEN

The retinogeniculate visual pathway (RGVP) conveys visual information from the retina to the lateral geniculate nucleus. The RGVP has four subdivisions, including two decussating and two nondecussating pathways that cannot be identified on conventional structural magnetic resonance imaging (MRI). Diffusion MRI tractography has the potential to trace these subdivisions and is increasingly used to study the RGVP. However, it is not yet known which fiber tracking strategy is most suitable for RGVP reconstruction. In this study, four tractography methods are compared, including constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, and multi-fiber (UKF-2T) and single-fiber (UKF-1T) unscented Kalman filter (UKF) methods. Experiments use diffusion MRI data from 57 subjects in the Human Connectome Project. The RGVP is identified using regions of interest created by two clinical experts. Quantitative anatomical measurements and expert anatomical judgment are used to assess the advantages and limitations of the four tractography methods. Overall, we conclude that UKF-2T and iFOD1 produce the best RGVP reconstruction results. The iFOD1 method can better quantitatively estimate the percentage of decussating fibers, while the UKF-2T method produces reconstructed RGVPs that are judged to better correspond to the known anatomy and have the highest spatial overlap across subjects. Overall, we find that it is challenging for current tractography methods to both accurately track RGVP fibers that correspond to known anatomy and produce an approximately correct percentage of decussating fibers. We suggest that future algorithm development for RGVP tractography should take consideration of both of these two points.


Asunto(s)
Imagen de Difusión Tensora/métodos , Cuerpos Geniculados/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Quiasma Óptico/diagnóstico por imagen , Nervio Óptico/diagnóstico por imagen , Tracto Óptico/diagnóstico por imagen , Retina/diagnóstico por imagen , Vías Visuales/diagnóstico por imagen , Adulto , Femenino , Humanos , Masculino , Adulto Joven
14.
Psychol Med ; 51(3): 485-493, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-31769368

RESUMEN

BACKGROUND: Functional neurological disorder (FND) is a condition at the intersection of neurology and psychiatry. Individuals with FND exhibit corticolimbic abnormalities, yet little is known about the role of white matter tracts in the pathophysiology of FND. This study characterized between-group differences in microstructural integrity, and correlated fiber bundle integrity with symptom severity, physical disability, and illness duration. METHODS: A diffusion tensor imaging (DTI) study was performed in 32 patients with mixed FND compared to 36 healthy controls. Diffusion-weighted magnetic resonance images were collected along with patient-reported symptom severity, physical disability (Short Form Health Survey-36), and illness duration data. Weighted-degree and link-level graph theory and probabilistic tractography analyses characterized fractional anisotropy (FA) values across cortico-subcortical connections. Results were corrected for multiple comparisons. RESULTS: Compared to controls, FND patients showed reduced FA in the stria terminalis/fornix, medial forebrain bundle, extreme capsule, uncinate fasciculus, cingulum bundle, corpus callosum, and striatal-postcentral gyrus projections. Except for the stria terminalis/fornix, these differences remained significant adjusting for depression and anxiety. In within-group analyses, physical disability inversely correlated with stria terminalis/fornix and medial forebrain bundle FA values; illness duration negatively correlated with stria terminalis/fornix white matter integrity. A FND symptom severity composite score did not correlate with FA in patients. CONCLUSIONS: In this first DTI study of mixed FND, microstructural differences were observed in limbic and associative tracts implicated in salience, defensive behaviors, and emotion regulation. These findings advance our understanding of neurocircuit pathways in the pathophysiology of FND.


Asunto(s)
Encéfalo/fisiopatología , Imagen de Difusión Tensora , Enfermedades del Sistema Nervioso/fisiopatología , Adulto , Estudios de Casos y Controles , Cuerpo Calloso/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiopatología , Sustancia Blanca/fisiopatología
15.
Cereb Cortex ; 30(12): 6191-6205, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32676671

RESUMEN

Early neuroimaging work in twin studies focused on studying genetic and environmental influence on gray matter macrostructure. However, it is also important to understand how gray matter microstructure is influenced by genes and environment to facilitate future investigations of their influence in mental disorders. Advanced diffusion MRI (dMRI) measures allow more accurate assessment of gray matter microstructure compared with conventional diffusion tensor measures. To understand genetic and environmental influence on gray matter, we used diffusion and structural MRI data from a large twin and sibling study (N = 840) and computed advanced dMRI measures including return to origin probability (RTOP), which is heavily weighted toward intracellular and intra-axonal restricted spaces, and mean squared displacement (MSD), more heavily weighted to diffusion in extracellular space and large cell bodies in gray matter. We show that while macrostructural features like brain volume are mainly genetically influenced, RTOP and MSD can together tap into both genetic and environmental influence on microstructure.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Interacción Gen-Ambiente , Sustancia Gris/anatomía & histología , Sustancia Gris/crecimiento & desarrollo , Adulto , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Adulto Joven
16.
Neuroimage ; 220: 117063, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32574805

RESUMEN

Diffusion MRI (dMRI) tractography has been successfully used to study the trigeminal nerves (TGNs) in many clinical and research applications. Currently, identification of the TGN in tractography data requires expert nerve selection using manually drawn regions of interest (ROIs), which is prone to inter-observer variability, time-consuming and carries high clinical and labor costs. To overcome these issues, we propose to create a novel anatomically curated TGN tractography atlas that enables automated identification of the TGN from dMRI tractography. In this paper, we first illustrate the creation of a trigeminal tractography atlas. Leveraging a well-established computational pipeline and expert neuroanatomical knowledge, we generate a data-driven TGN fiber clustering atlas using tractography data from 50 subjects from the Human Connectome Project. Then, we demonstrate the application of the proposed atlas for automated TGN identification in new subjects, without relying on expert ROI placement. Quantitative and visual experiments are performed with comparison to expert TGN identification using dMRI data from two different acquisition sites. We show highly comparable results between the automatically and manually identified TGNs in terms of spatial overlap and visualization, while our proposed method has several advantages. First, our method performs automated TGN identification, and thus it provides an efficient tool to reduce expert labor costs and inter-operator bias relative to expert manual selection. Second, our method is robust to potential imaging artifacts and/or noise that can prevent successful manual ROI placement for TGN selection and hence yields a higher successful TGN identification rate.


Asunto(s)
Conectoma/métodos , Imagen de Difusión Tensora/métodos , Nervio Trigémino/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Bases de Datos Factuales , Humanos
17.
CNS Spectr ; 25(3): 392-401, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31106718

RESUMEN

OBJECTIVE: Several studies suggested that obsessive-compulsive disorder (OCD) patients display increased impulsivity, impaired decision-making, and reward system dysfunction. In a Research Domain Criteria (RDoC) perspective, these findings are prototypical for addiction and have led some authors to view OCD as a behavioral addiction. Thus, the aim of this study was to investigate similarities and differences on impulsivity, decision-making, and reward system, as core dimensions of addiction, across OCD and gambling disorder (GD) patients. METHODS: Forty-four OCD patients, 26 GD patients, and 40 healthy controls (HCs) were included in the study. Impulsivity was assessed through the Barratt Impulsiveness Scale, decision-making through the Iowa Gambling Task, and reward system through a self-report clinical instrument (the Shaps-Hamilton Anhedonia Scale) assessing hedonic tone and through an olfactory test assessing hedonic appraisal to odors. RESULTS: Both OCD and GD patients showed increased impulsivity when compared to HCs. More specifically, the OCD patients showed cognitive impulsivity, and the GD patients showed both increased cognitive and motor impulsivity. Furthermore, both OCD and GD patients showed impaired decision-making performances when compared to HCs. Finally, GD patients showed increased anhedonia and blunted hedonic response to pleasant odors unrelated to gambling or depression/anxiety symptoms, while OCD patients showed only increased anhedonia levels related to OC and depression/anxiety symptoms. CONCLUSION: OCD patients showed several similarities and some differences with GD patients when compared to HCs on impulsivity, decision-making, and reward system, three core dimensions of addiction. These results could have relevant implications for the research of new treatment targets for OCD.


Asunto(s)
Juego de Azar/diagnóstico , Trastorno Obsesivo Compulsivo/diagnóstico , Adulto , Cognición , Conducta Compulsiva , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento , Pruebas Neuropsicológicas
18.
Hum Brain Mapp ; 40(4): 1221-1233, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30548738

RESUMEN

Research on age-related memory alterations traditionally targets individuals aged ≥65 years. However, recent studies emphasize the importance of early aging processes. We therefore aimed to characterize variation in brain gray matter structure in early midlife as a function of sex and menopausal status. Subjects included 94 women (33 premenopausal, 29 perimenopausal, and 32 postmenopausal) and 99 demographically comparable men from the New England Family Study. Subjects were scanned with a high-resolution T1 sequence on a 3 T whole body scanner. Sex and reproductive-dependent structural differences were evaluated using Box's M test and analysis of covariances (ANCOVAs) for gray matter volumes. Brain regions of interest included dorsolateral prefrontal cortex (DLPFC), inferior parietal lobule (iPAR), anterior cingulate cortex (ACC), hippocampus (HIPP), and parahippocampus. While we observed expected significant sex differences in volume of hippocampus with women of all groups having higher volumes than men relative to cerebrum size, we also found significant differences in the covariance matrices of perimenopausal women compared with postmenopausal women. Associations between ACC and HIPP/iPAR/DLPFC were higher in postmenopausal women and correlated with better memory performance. Findings in this study underscore the importance of sex and reproductive status in early midlife for understanding memory function with aging.


Asunto(s)
Encéfalo/anatomía & histología , Sustancia Gris/anatomía & histología , Posmenopausia , Premenopausia , Envejecimiento/fisiología , Encéfalo/fisiología , Estudios Transversales , Femenino , Sustancia Gris/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria , Persona de Mediana Edad , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Caracteres Sexuales
20.
J Neuropsychiatry Clin Neurosci ; 31(2): 152-158, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30458664

RESUMEN

OBJECTIVE: The selection of a bitemporal (BT) or right unilateral (RUL) electrode placement affects the efficacy and side effects of ECT. Previous studies have not entirely described the neurobiological underpinnings of such differential effects. Recent neuroimaging research on gray matter volumes is contributing to our understanding of the mechanism of action of ECT and could clarify the differential mechanisms of BT and RUL ECT. METHODS: To assess the whole-brain gray matter volumetric changes observed after treating patients with treatment-resistant depression with BT or RUL ECT, the authors used MRI to assess 24 study subjects with treatment-resistant depression (bifrontotemporal ECT, N=12; RUL ECT, N=12) at two time points (before the first ECT session and after ECT completion). RESULTS: Study subjects receiving BT ECT showed gray matter volume increases in the bilateral limbic system, but subjects treated with RUL ECT showed gray matter volume increases limited to the right hemisphere. The authors observed significant differences between the two groups in midtemporal and subcortical limbic structures in the left hemisphere. CONCLUSIONS: These findings highlight that ECT-induced gray matter volume increases may be specifically observed in the stimulated hemispheres. The authors suggest that electrode placement may relevantly contribute to the development of personalized ECT protocols.


Asunto(s)
Corteza Cerebral/patología , Trastorno Depresivo Resistente al Tratamiento/terapia , Terapia Electroconvulsiva/métodos , Sistema Límbico/patología , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Sistema Límbico/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda