Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Anal Chem ; 96(12): 4901-4908, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38493347

RESUMEN

Chiral resolution plays a crucial role in the field of drug development, especially for a better understanding of biochemical processes. In such a context, classic separation methods have been used for decades due to their versatility and easy scale-up. Among the many attempts proposed for enantioselective separation, electroassisted methods are presented as an interesting alternative. Herein, we present the use of wirelessly activated hollow tubular systems for the effective, simple, and tunable separation of racemic and enantioenriched mixtures. These double-layered tubular objects consist of an external polypyrrole chassis, a polymer with good electromechanical properties, functionalized in its inner part with an inherently chiral oligomer. The synergy between the electromechanical pumping process of the outer layer and the enantioselective affinity of the inner part induces the system to behave as a miniaturized chiral column. These hybrid objects are able to separate racemic and enantioenriched solutions of chiral model analytes into the corresponding enantiomers in high enantiomeric purity. Finally, these electromechanical systems can resolve mixtures formed by chiral probes with completely uncorrelated molecular structures injected simultaneously into the single antipodes.

2.
Anal Bioanal Chem ; 416(16): 3677-3685, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38755462

RESUMEN

Chirality is a fundamental and ubiquitous property of nature involved in multiple fields of science. In particular, the possible resolution of the enantiomeric forms of a molecule is crucial in the pharmaceutical, food, and agrochemical industries. The search for efficient, broad-spectrum, and yet simple methods for obtaining enantiomerically pure substances is a current challenge. Enantioselective resolution methods rely on an asymmetric environment that allows the two antipodes of a chiral molecule to be distinguished. In addition to enantiomeric separation techniques, such as chromatography and electrophoresis, new promising approaches involving out-of-the-scheme synergistic effects between chiral selectors (CS) and external stimuli are emerging. This Trends article discusses different enantioselective mechanisms triggered by unconventional physicochemical stimuli for the design of avant-garde approaches that could offer novel perspectives in the field of chiral resolution.

3.
Chirality ; 35(2): 110-117, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36513396

RESUMEN

Microfluidic valves based on chemically responsive materials have gained considerable attention in recent years. Herein, a wireless enantio-responsive valve triggered by bipolar electrochemistry combined with chiral recognition is reported. A conducting polymer actuator functionalized with the enantiomers of an inherently chiral oligomer was used as bipolar valve to cover a tube loaded with a dye and immersed in a solution containing chiral analytes. When an electric field is applied, the designed actuator shows a reversible cantilever-type deflection, allowing the release of the dye from the reservoir. The tube can be opened and closed by simply switching the polarity of the system. Qualitative results show the successful release of the colorant, driven by chirality and redox reactions occurring at the bipolar valve. The device works well even in the presence of chemically different chiral analytes in the same solution. These systems open up new possibilities in the field of microfluidics, including also controlled drug delivery applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Polímeros , Estereoisomerismo , Sistemas de Liberación de Medicamentos/métodos
4.
Chem Commun (Camb) ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979647

RESUMEN

Electroorganic synthesis has become an exciting tool for the asymmetric conversion of pro-chiral compounds. Herein, we introduced a wireless methodology based on bipolar electrochemistry in synergy with the enantioselective capabilities of inherently chiral oligomers to induce an umpolung chirality transfer. This was exemplified by the electro-conversion of a racemic mixture of lansoprazole to an enantio-enriched solution of a single antipode.

5.
Chempluschem ; : e202400310, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39114955

RESUMEN

Developing chemiresistive devices for the wireless detection of complex analytes has gained considerable interest. In particular, the enantioselective recognition of chiral molecules is still a challenge. Here, we design a hybrid chemiresistive device for the wireless enantioselective discrimination of chiral analytes by combining the enantiorecognition capabilities of an inherently chiral oligomer, that is, oligo-(3,3'-dibenzothiophene) (BT2T4) and the insulating/conducting transition of polypyrrole (Ppy). The device is obtained by modifying each extremity of an interdigitated electrode (IDE) with Ppy on the interdigitated area and oligo-BT2T4 on the connection pads. Due to the asymmetric electroactivity triggered by bipolar electrochemistry, the wireless enantioselective discrimination of both enantiomers of tryptophan and DOPA was achieved. A difference in the onset resistance values was obtained for both enantiomers due to a favorable or unfavorable diastereomeric interaction between the inherently chiral oligomer and the antipode of the chiral molecule. Interestingly, such a device showed a wide quantification range, from µM to mM levels. This work opens up new alternatives to designing advanced wireless devices in enantiorecognition.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda