RESUMEN
Elucidation of how the differentiation of hematopoietic stem and progenitor cells (HSPCs) is reconfigured in response to the environment is critical for understanding the biology and disorder of hematopoiesis. Here we found that the transcription factors (TFs) Bach2 and Bach1 promoted erythropoiesis by regulating heme metabolism in committed erythroid cells to sustain erythroblast maturation and by reinforcing erythroid commitment at the erythro-myeloid bifurcation step. Bach TFs repressed expression of the gene encoding the transcription factor C/EBPß, as well as that of its target genes encoding molecules important for myelopoiesis and inflammation; they achieved the latter by binding to their regulatory regions also bound by C/EBPß. Lipopolysaccharide diminished the expression of Bach TFs in progenitor cells and promoted myeloid differentiation. Overexpression of Bach2 in HSPCs promoted erythroid development and inhibited myelopoiesis. Knockdown of BACH1 or BACH2 in human CD34+ HSPCs impaired erythroid differentiation in vitro. Thus, Bach TFs accelerate erythroid commitment by suppressing the myeloid program at steady state. Anemia of inflammation and myelodysplastic syndrome might involve reduced activity of Bach TFs.
Asunto(s)
Anemia/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Eritropoyesis/fisiología , Anemia/etiología , Animales , Diferenciación Celular/fisiología , Células Eritroides/citología , Células Eritroides/metabolismo , Humanos , Infecciones/complicaciones , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Síndromes Mielodisplásicos/etiología , Síndromes Mielodisplásicos/metabolismoRESUMEN
Clonal cytopenia of undetermined significance (CCUS) represents a distinct disease entity characterized by myeloid-related somatic mutations with a variant allele fraction of ≥2% in individuals with unexplained cytopenia(s) but without a myeloid neoplasm (MN). Notably, CCUS carries a risk of progressing to MN, particularly in cases featuring high-risk mutations. Understanding CCUS requires dedicated studies to elucidate its risk factors and natural history. Our analysis of 357 CCUS patients investigated the interplay between clonality, cytopenia, and prognosis. Multivariate analysis identified 3 key adverse prognostic factors: the presence of splicing mutation(s) (score = 2 points), platelet count <100×109/L (score = 2.5), and ≥2 mutations (score = 3). Variable scores were based on the coefficients from the Cox proportional hazards model. This led to the development of the Clonal Cytopenia Risk Score (CCRS), which stratified patients into low- (score <2.5 points), intermediate- (score 2.5-<5), and high-risk (score ≥5) groups. The CCRS effectively predicted 2-year cumulative incidence of MN for low- (6.4%), intermediate- (14.1%), and high- (37.2%) risk groups, respectively, by Gray's test (P <.0001). We further validated the CCRS by applying it to an independent CCUS cohort of 104 patients, demonstrating a c-index of 0.64 (P =.005) in stratifying the cumulative incidence of MN. Our study underscores the importance of integrating clinical and molecular data to assess the risk of CCUS progression, making the CCRS a valuable tool that is practical and easily calculable. These findings are clinically relevant, shaping the management strategies for CCUS and informing future clinical trial designs.
RESUMEN
ABSTRACT: Myelodysplastic syndromes (MDSs) are neoplastic myeloid proliferations characterized by ineffective hematopoiesis resulting in peripheral blood cytopenias. MDS is distinguished from nonneoplastic clonal myeloid proliferations by the presence of morphologic dysplasia and from acute myeloid leukemia by a blast threshold of 20%. The diagnosis of MDS can be challenging because of the myriad other causes of cytopenias: accurate diagnosis requires the integration of clinical features with bone marrow and peripheral blood morphology, immunophenotyping, and genetic testing. MDS has historically been subdivided into several subtypes by classification schemes, the most recent of which are the International Consensus Classification and World Health Organization Classification (fifth edition), both published in 2022. The aim of MDS classification is to identify entities with shared genetic underpinnings and molecular pathogenesis, and the specific subtype can inform clinical decision-making alongside prognostic risk categorization. The current MDS classification schemes incorporate morphologic features (bone marrow and blood blast percentage, degree of dysplasia, ring sideroblasts, bone marrow fibrosis, and bone marrow hypocellularity) and also recognize 3 entities defined by genetics: isolated del(5q) cytogenetic abnormality, SF3B1 mutation, and TP53 mutation. It is anticipated that with advancing understanding of the genetic basis of MDS pathogenesis, future MDS classification will be based increasingly on genetic classes. Nevertheless, morphologic features in MDS reflect the phenotypic expression of the underlying abnormal genetic pathways and will undoubtedly retain importance to inform prognosis and guide treatment.
Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Humanos , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Médula Ósea/patología , Trastornos Mieloproliferativos/patología , Pronóstico , Leucemia Mieloide Aguda/patologíaRESUMEN
Systematic studies of germ line genetic predisposition to myeloid neoplasms in adult patients are still limited. In this work, we performed germ line and somatic targeted sequencing in a cohort of adult patients with hypoplastic bone marrow (BM) to study germ line predisposition variants and their clinical correlates. The study population included 402 consecutive adult patients investigated for unexplained cytopenia and reduced age-adjusted BM cellularity. Germ line mutation analysis was performed using a panel of 60 genes, and variants were interpreted per the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines; somatic mutation analysis was performed using a panel of 54 genes. Of the 402 patients, 27 (6.7%) carried germ line variants that caused a predisposition syndrome/disorder. The most frequent disorders were DDX41-associated predisposition, Fanconi anemia, GATA2-deficiency syndrome, severe congenital neutropenia, RASopathy, and Diamond-Blackfan anemia. Eighteen of 27 patients (67%) with causative germ line genotype were diagnosed with myeloid neoplasm, and the remaining with cytopenia of undetermined significance. Patients with a predisposition syndrome/disorder were younger than the remaining patients and had a higher risk of severe or multiple cytopenias and advanced myeloid malignancy. In patients with myeloid neoplasm, causative germ line mutations were associated with increased risk of progression into acute myeloid leukemia. Family or personal history of cancer did not show significant association with a predisposition syndrome/disorder. The findings of this study unveil the spectrum, clinical expressivity, and prevalence of germ line predisposition mutations in an unselected cohort of adult patients with cytopenia and hypoplastic BM.
Asunto(s)
Anemia Aplásica , Predisposición Genética a la Enfermedad , Células Germinativas , Leucemia Mieloide , Humanos , Leucemia Mieloide/genética , Hematopoyesis Clonal , Masculino , Femenino , Persona de Mediana Edad , Anemia Aplásica/genética , Penetrancia , Análisis Mutacional de ADNRESUMEN
Myelodysplastic syndromes/myelodysplastic neoplasms (MDS) are associated with variable clinical presentations and outcomes. The initial response criteria developed by the International Working Group (IWG) in 2000 have been used in clinical practice, clinical trials, regulatory reviews, and drug labels. Although the IWG criteria were revised in 2006 and 2018 (the latter focusing on lower-risk disease), limitations persist in their application to higher-risk MDS (HR-MDS) and their ability to fully capture the clinical benefits of novel investigational drugs or serve as valid surrogates for longer-term clinical end points (eg, overall survival). Further, issues related to the ambiguity and practicality of some criteria lead to variability in interpretation and interobserver inconsistency in reporting results from the same sets of data. Thus, we convened an international panel of 36 MDS experts and used an established modified Delphi process to develop consensus recommendations for updated response criteria that would be more reflective of patient-centered and clinically relevant outcomes in HR-MDS. Among others, the IWG 2023 criteria include changes in the hemoglobin threshold for complete remission (CR), the introduction of CR with limited count recovery and CR with partial hematologic recovery as provisional response criteria, the elimination of marrow CR, and specific recommendations for the standardization of time-to-event end points and the derivation and reporting of responses. The updated criteria should lead to a better correlation between patient-centered outcomes and clinical trial results in an era of multiple emerging new agents with novel mechanisms of action.
Asunto(s)
Hematología , Síndromes Mielodisplásicos , Humanos , Resultado del Tratamiento , Consenso , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/tratamiento farmacológico , Evaluación de Resultado en la Atención de SaludRESUMEN
Germ line DDX41 variants have been implicated in late-onset myeloid neoplasms (MNs). Despite an increasing number of publications, many important features of DDX41-mutated MNs remain to be elucidated. Here we performed a comprehensive characterization of DDX41-mutated MNs, enrolling a total of 346 patients with DDX41 pathogenic/likely-pathogenic (P/LP) germ line variants and/or somatic mutations from 9082 MN patients, together with 525 first-degree relatives of DDX41-mutated and wild-type (WT) patients. P/LP DDX41 germ line variants explained â¼80% of known germ line predisposition to MNs in adults. These risk variants were 10-fold more enriched in Japanese MN cases (n = 4461) compared with the general population of Japan (n = 20 238). This enrichment of DDX41 risk alleles was much more prominent in male than female (20.7 vs 5.0). P/LP DDX41 variants conferred a large risk of developing MNs, which was negligible until 40 years of age but rapidly increased to 49% by 90 years of age. Patients with myelodysplastic syndromes (MDS) along with a DDX41-mutation rapidly progressed to acute myeloid leukemia (AML), which was however, confined to those having truncating variants. Comutation patterns at diagnosis and at progression to AML were substantially different between DDX41-mutated and WT cases, in which none of the comutations affected clinical outcomes. Even TP53 mutations made no exceptions and their dismal effect, including multihit allelic status, on survival was almost completely mitigated by the presence of DDX41 mutations. Finally, outcomes were not affected by the conventional risk stratifications including the revised/molecular International Prognostic Scoring System. Our findings establish that MDS with DDX41-mutation defines a unique subtype of MNs that is distinct from other MNs.
Asunto(s)
ARN Helicasas DEAD-box , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Adulto , Anciano de 80 o más Años , Femenino , Humanos , Masculino , ARN Helicasas DEAD-box/genética , Células Germinativas , Leucemia Mieloide Aguda/genética , Mutación , Síndromes Mielodisplásicos/genética , Trastornos Mieloproliferativos/genéticaRESUMEN
BACKGROUND: The Molecular International Prognostic Scoring System (IPSS-M) is the new gold standard for diagnostic outcome prediction in patients with myelodysplastic syndromes (MDS). This study was designed to assess the additive prognostic impact of dynamic transfusion parameters during early follow-up. METHODS: We retrieved complete transfusion data from 677 adult Swedish MDS patients included in the IPSS-M cohort. Time-dependent erythrocyte transfusion dependency (E-TD) was added to IPSS-M features and analyzed regarding overall survival and leukemic transformation (acute myeloid leukemia). A multistate Markov model was applied to assess the prognostic value of early changes in transfusion patterns. RESULTS: Specific clinical and genetic features were predicted for diagnostic and time-dependent transfusion patterns. Importantly, transfusion state both at diagnosis and within the first year strongly predicts outcomes in both lower (LR) and higher-risk (HR) MDSs. In multivariable analysis, 8-month landmark E-TD predicted shorter survival independently of IPSS-M (p < 0.001). A predictive model based on IPSS-M and 8-month landmark E-TD performed significantly better than a model including only IPSS-M. Similar trends were observed in an independent validation cohort (n = 218). Early transfusion patterns impacted both future transfusion requirements and outcomes in a multistate Markov model. CONCLUSION: The transfusion requirement is a robust and available clinical parameter incorporating the effects of first-line management. In MDS, it provides dynamic risk information independently of diagnostic IPSS-M and, in particular, clinical guidance to LR MDS patients eligible for potentially curative therapeutic intervention.
Asunto(s)
Síndromes Mielodisplásicos , Humanos , Síndromes Mielodisplásicos/terapia , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/mortalidad , Femenino , Pronóstico , Masculino , Anciano , Persona de Mediana Edad , Suecia , Cadenas de Markov , Anciano de 80 o más Años , Transfusión de Eritrocitos , Transfusión Sanguínea , AdultoRESUMEN
Myeloid neoplasms and acute leukemias derive from the clonal expansion of hematopoietic cells driven by somatic gene mutations. Although assessment of morphology plays a crucial role in the diagnostic evaluation of patients with these malignancies, genomic characterization has become increasingly important for accurate diagnosis, risk assessment, and therapeutic decision making. Conventional cytogenetics, a comprehensive and unbiased method for assessing chromosomal abnormalities, has been the mainstay of genomic testing over the past several decades and remains relevant today. However, more recent advances in sequencing technology have increased our ability to detect somatic mutations through the use of targeted gene panels, whole-exome sequencing, whole-genome sequencing, and whole-transcriptome sequencing or RNA sequencing. In patients with myeloid neoplasms, whole-genome sequencing represents a potential replacement for both conventional cytogenetic and sequencing approaches, providing rapid and accurate comprehensive genomic profiling. DNA sequencing methods are used not only for detecting somatically acquired gene mutations but also for identifying germline gene mutations associated with inherited predisposition to hematologic neoplasms. The 2022 International Consensus Classification of myeloid neoplasms and acute leukemias makes extensive use of genomic data. The aim of this report is to help physicians and laboratorians implement genomic testing for diagnosis, risk stratification, and clinical decision making and illustrates the potential of genomic profiling for enabling personalized medicine in patients with hematologic neoplasms.
Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Neoplasias , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutación , Genómica , Neoplasias/genética , Neoplasias Hematológicas/genética , Toma de Decisiones ClínicasRESUMEN
The classification of myeloid neoplasms and acute leukemias was last updated in 2016 within a collaboration between the World Health Organization (WHO), the Society for Hematopathology, and the European Association for Haematopathology. This collaboration was primarily based on input from a clinical advisory committees (CACs) composed of pathologists, hematologists, oncologists, geneticists, and bioinformaticians from around the world. The recent advances in our understanding of the biology of hematologic malignancies, the experience with the use of the 2016 WHO classification in clinical practice, and the results of clinical trials have indicated the need for further revising and updating the classification. As a continuation of this CAC-based process, the authors, a group with expertise in the clinical, pathologic, and genetic aspects of these disorders, developed the International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias. Using a multiparameter approach, the main objective of the consensus process was the definition of real disease entities, including the introduction of new entities and refined criteria for existing diagnostic categories, based on accumulated data. The ICC is aimed at facilitating diagnosis and prognostication of these neoplasms, improving treatment of affected patients, and allowing the design of innovative clinical trials.
Asunto(s)
Neoplasias Hematológicas , Leucemia , Trastornos Mieloproliferativos , Enfermedad Aguda , Consenso , Genómica , Neoplasias Hematológicas/patología , Humanos , Leucemia/diagnóstico , Leucemia/genética , Leucemia/patología , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Organización Mundial de la SaludRESUMEN
Myeloid neoplasms originate from the clonal proliferation of hematopoietic stem cells, which is driven by the acquisition of somatic genetic mutations. Within these disorders, myelodysplastic syndromes (MDS) are specifically characterized by morphologic abnormalities (dysplasia) and impaired maturation of myeloid precursors (ineffective hematopoiesis), resulting in peripheral blood cytopenia. Several studies have advanced the field of MDS, with a few landmark papers leading to a paradigm shift, opening new avenues of research and enabling a molecular revolution. These seminal papers include the first description of the 5q- syndrome, the identification of somatic mutations of TET2 in myeloid neoplasms, the detection of common pathway mutations in the splicing machinery, and the discovery of clonal hematopoiesis. The somatic genomic landscape of MDS is now well-defined. Genes that are recurrently mutated include epigenetic regulators, as well as genes of RNA splicing machinery, transcription regulation, DNA repair control, cohesin complex, and signal transduction. Furthermore, several disorders with a germline genetic predisposition to MDS have been identified, collectively accounting for up to 15% of all MDS cases. Genomic profiling can significantly improve the diagnostic approach to MDS, allowing the identification of distinct nosologic entities such as SF3B1-mutant or TP53-mutant MDS. The Molecular International Prognostic Scoring System for MDS (IPSS-M) has already proven to be a valuable tool for individualized risk assessment and treatment decisions. In addition, the recently developed molecular taxonomy of MDS will likely facilitate the implementation of precision medicine approaches for these disorders. This will necessitate the establishment of specialized infrastructures within public health systems, involving close collaboration between healthcare institutions, academia, and the life sciences industry.
RESUMEN
BACKGROUND: Hypersensitivity reactions (HR) are common in mastocytosis. However, little is known about triggers and risk factors. The registry of the European Competence Network on Mastocytosis (ECNM) enables reliable studies in a larger cohort of mastocytosis patients. We assessed prevalence, triggers and risk factors of HR in adults with mastocytosis in the ECNM registry. METHODS: Data were collected in 27 ECNM centers. We analyzed potential triggers (Hymenoptera venoms, food, drug, inhalant and others) and risk factors at diagnosis and during follow-up. The study group consisted of 2485 adults with mastocytosis, 1379 women (55.5%) and 1106 men (44.5%). Median age was 48.2 years (range 18-91 years). RESULTS: Nine hundred and forty eight patients (38.1%) reported one or more HR`. Most common triggers were Hymenoptera venoms in cutaneous mastocytosis (CM) and indolent systemic mastocytosis (ISM), whereas in advanced SM (advSM), most common elicitors were drugs, including nonsteroidal anti-inflammatory agents and penicillin. In multivariate analyses, tryptase level < 90 ng/mL, <15% infiltration by mast cells in bone marrow biopsy-sections, and diagnosis of ISM were identified as independent risk factors for HR. For drug-induced HR, prominent risk factors were advSM and high tryptase levels. New reactions were observed in 4.8% of all patients during 4 years follow-up. CONCLUSIONS: HR are mainly triggered by Hymenoptera venoms in patients with CM and ISM and by drugs in patients with advSM. Tryptase levels <90 ng/mL, mast cell bone marrow infiltration <15%, and WHO category ISM are predictors of HR. New HR occur in 4.8% of all patients within 4 years.
Asunto(s)
Mastocitosis , Sistema de Registros , Humanos , Adulto , Persona de Mediana Edad , Masculino , Femenino , Anciano , Mastocitosis/epidemiología , Mastocitosis/diagnóstico , Mastocitosis/complicaciones , Prevalencia , Adulto Joven , Adolescente , Anciano de 80 o más Años , Proyectos Piloto , Factores de Riesgo , Hipersensibilidad/epidemiología , Hipersensibilidad/diagnósticoRESUMEN
Information on causes of death (CoDs) and the impact of myelodysplastic syndromes (MDS) on survival in patients with lower-risk MDS (LR-MDS) is limited. A better understanding of the relationship between disease characteristics, clinical interventions and CoDs may improve outcomes of patients with LR-MDS. We prospectively collected data on patients with LR-MDS in the European MDS registry from 2008 to 2019. Clinical, laboratory and CoDs data were obtained. To examine MDS-specific survival, relative survival (RS) was estimated using national life tables. Of 2396 evaluated subjects, 900 died (median overall survival [OS]: 4.7 years; median follow-up: 3.5 years). The most common CoDs were acute myeloid leukaemia/MDS (20.1%), infection (17.8%) and cardiovascular disease (CVD; 9.8%). Patients with isolated del(5q) and with red cell transfusion needed during the disease course, had a higher risk of fatal CVD. The 5-year OS was 47.3% and the 5-year RS was 59.6%, indicating that most patients died due to their underlying MDS. Older patients (aged >80 years) and the lowest-risk patients were more likely to die from competing causes. This study shows that MDS and its related complications play crucial role in the outcome of patients with LR-MDS.
Asunto(s)
Enfermedades Cardiovasculares , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Causas de Muerte , Progresión de la Enfermedad , Sistema de RegistrosRESUMEN
Clonal cytopenia of undetermined significance (CCUS) is associated with an increased risk of developing a myeloid neoplasm with myelodysplasia (MN). To identify the features of the mutant clone(s) that is associated with clinical phenotype and progression, we studied the following cohorts of individuals: 311 patients with idiopathic cytopenia of undetermined significance (ICUS), 532 community-dwelling individuals without hematologic phenotype (n = 355) or with unexplained anemia (n = 177), and 592 patients with overt MN. Ninety-two of 311 (30%) patients with ICUS carried a somatic genetic lesion that signaled CCUS. Clonal hematopoiesis (CH) was detected in 19.7% and 27.7% of nonanemic and anemic community-dwelling individuals, respectively. Different mutation patterns and variant allele frequencies (VAFs) (clone metrics parameters) were observed in the conditions studied. Recurrent mutation patterns exhibited different VAFs associated with marrow dysplasia (0.17-0.48), indicating variable clinical expressivity of mutant clones. Unsupervised clustering analysis based on mutation profiles identified 2 major clusters, characterized by isolated DNMT3A mutations (CH-like cluster) or combinatorial mutation patterns (MN-like cluster), and showing different overall survival (HR, 1.8). In patients with CCUS, the 2 clusters had different risk of progression to MN (HR, 2.7). Within the MN-like cluster, distinct subsets with different risk of progression to MN were identified based on clone metrics. These findings unveil marked variability in the clinical expressivity of myeloid driver genes and underline the limitations of morphologic dysplasia for clinical staging of mutant hematopoietic clones. Clone metrics appears to be critical for informing clinical decision-making in patients with clonal cytopenia.
Asunto(s)
Hematopoyesis Clonal , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , ADN Metiltransferasa 3A/genética , Femenino , Frecuencia de los Genes , Humanos , Masculino , Persona de Mediana Edad , Mutación , Adulto JovenRESUMEN
The incidence and prognosis of clonal hematopoiesis in patients with isolated neutropenia among patients with idiopathic cytopenia of undetermined significance (ICUS), known as ICUS-N or chronic idiopathic neutropenia (CIN) patients, is poorly defined. The current study sought to investigate the frequency and clinical significance of mutations of genes implicated in myeloid malignancies using next-generation sequencing in patients with CIN (n = 185) with a long follow-up. We found that 21 (11.35%) of 185 patients carried a total of 25 somatic mutations in 6 genes with a median variant allele frequency of 12.75%. The most frequently mutated genes were DNMT3A and TET2 involving >80% of patients, followed by IDH1/2, SRSF2, and ZRSR2. The frequency of transformation to a myeloid malignancy was low in the total group of patients (5 of 185 patients [2.70%]). However, from the transformed patients, 4 belonged to the clonal group (4 of 21 [19.05%]) and 1 to the nonclonal group (1 of 164 [0.61%]), indicating that the presence of mutation(s) confers a relative risk for transformation of 31.24 (P = .0017). The variant allele frequency of the mutant clones in the transformed patients was >10% in all cases, and the genes most frequently associated with malignant transformation were SRSF2 and IDH1. No significant differences were identified between the clonal and nonclonal groups in the severity of neutropenia. Patients with clonal disease were older compared with nonclonal patients. These data contribute to the better understanding of the heterogeneous entities underlying ICUS and highlight the importance of mutation analysis for the diagnosis and prognosis of patients with unexplained neutropenias.
Asunto(s)
Hematopoyesis Clonal , Neutropenia/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Frecuencia de los Genes , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Mutación , Neutropenia/diagnóstico , Pronóstico , Adulto JovenRESUMEN
Double knockout of the two miR-15/16 loci in mouse resulted in the development of acute myeloid leukemia (AML). This result suggested that, at least, a fraction of human AMLs could be due to a similar mechanism. We analyzed the role of the two miR-15/16 clusters in 93 myelodysplastic syndrome (MDS) patients divided in three subgroups: patients with MDS, patients with MDS before transforming into AML (MDS-T), and patients with AML evolving from MDS (MDS-AML). Then, we tested 139 AML cases and 14 different AML cell lines by assessing microRNA (miRNA) expression, target protein expression, genetic loss, and silencing. MDS-T and MDS-AML patients show a reduction of the expression of miR-15a/-15b/-16 compared to MDS patients. Each miRNA can significantly predict MDS and MDS-T groups. Then, 79% of primary AMLs show a reduced expression of miR-15a and/or miR-15b. The expression of miR-15a/-15b/-16 significantly stratified AML patients in two prognostic classes. Furthermore, 40% of AML cell lines showed a combined loss of the expression of miR-15a/-15b and overexpression of their direct/indirect targets. As potential mechanisms involved in the silencing of the two miR-15/16 loci, we identified a genetic loss of miR-15a and miR-15b and silencing of these two loci by methylation. We identified a potential driver oncogenic role in the loss of expression of both miR-15/16 clusters in the progression of MDS into AML and in AML pathogenesis. The stratification of AML patients, based on miR-15/16 expression, can lead to targeted and combination therapies for the treatment of this incurable disease.
Asunto(s)
Leucemia Mieloide Aguda/genética , MicroARNs/genética , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Regulación Leucémica de la Expresión Génica , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Masculino , MicroARNs/metabolismo , Persona de Mediana EdadRESUMEN
Intron removal from premature-mRNA (pre-mRNA splicing) is an essential part of gene expression and regulation that is required for the production of mature, protein-coding mRNA. The spliceosome (SPL), a majestic machine composed of five small nuclear RNAs and hundreds of proteins, behaves as an eminent transcriptome tailor, efficiently performing splicing as a protein-directed metallo-ribozyme. To select and excise long and diverse intronic sequences with single-nucleotide precision, the SPL undergoes a continuous compositional and conformational remodeling, forming eight distinct complexes throughout each splicing cycle. Splicing fidelity is of paramount importance to preserve the integrity of the proteome. Mutations in splicing factors can severely compromise the accuracy of this machinery, leading to aberrant splicing and altered gene expression. Decades of biochemical and genetic studies have provided insights into the SPL's composition and function, but its complexity and plasticity have prevented an in-depth mechanistic understanding. Single-particle cryogenic electron microscopy techniques have ushered in a new era for comprehending eukaryotic gene regulation, providing several near-atomic resolution structures of the SPL from yeast and humans. Nevertheless, these structures represent isolated snapshots of the splicing process and are insufficient to exhaustively assess the function of each SPL component and to unravel particular facets of the splicing mechanism in a dynamic environment.In this Account, building upon our contributions in this field, we discuss the role of biomolecular simulations in uncovering the mechanistic intricacies of eukaryotic splicing in health and disease. Specifically, we showcase previous applications to illustrate the role of atomic-level simulations in elucidating the function of specific proteins involved in the architectural reorganization of the SPL along the splicing cycle. Moreover, molecular dynamics applications have uniquely contributed to decrypting the channels of communication required for critical functional transitions of the SPL assemblies. They have also shed light on the role of carcinogenic mutations in the faithful selection of key intronic regions and the molecular mechanism of splicing modulators. Additionally, we emphasize the role of quantum-classical molecular dynamics in unraveling the chemical details of pre-mRNA cleavage in the SPL and in its evolutionary ancestors, group II intron ribozymes. We discuss methodological pitfalls of multiscale calculations currently used to dissect the splicing mechanism, presenting future challenges in this field. The results highlight how atomic-level simulations can enrich the interpretation of experimental results. We envision that the synergy between computational and experimental approaches will aid in developing innovative therapeutic strategies and revolutionary gene modulation tools to fight the over 200 human diseases associated with splicing misregulation, including cancer and neurodegeneration.
Asunto(s)
Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Antineoplásicos/farmacología , Humanos , Simulación de Dinámica Molecular , Neoplasias/genética , Neoplasias/patología , Teoría Cuántica , Empalme del ARN/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismoRESUMEN
Anemia is a major and currently poorly understood clinical manifestation of hematopoietic aging. Upon aging, hematopoietic clones harboring acquired leukemia-associated mutations expand and become detectable, now referred to as clonal hematopoiesis (CH). To investigate the relationship between CH and anemia of the elderly, we explored the landscape and dynamics of CH in older individuals with anemia. From the prospective, population-based Lifelines cohort (n = 167 729), we selected all individuals at least 60 years old who have anemia according to World Health Organization criteria (n = 676) and 1:1 matched control participants. Peripheral blood of 1298 individuals was analyzed for acquired mutations at a variant allele frequency (VAF) of 1% or higher in 27 driver genes. To track clonal evolution over time, we included all available follow-up samples (n = 943). CH was more frequently detected in individuals with anemia (46.6%) compared with control individuals (39.1%; P = .007). Although no differences were observed regarding commonly detected DTA mutations (DNMT3A, TET2, ASXL1) in individuals with anemia compared with control individuals, other mutations were enriched in the anemia cohort, including TP53 and SF3B1. Unlike individuals with nutrient deficiency (P = .84), individuals with anemia of chronic inflammation and unexplained anemia revealed a higher prevalence of CH (P = .035 and P = .017, respectively) compared with their matched control individuals. Follow-up analyses revealed that clones may expand and decline, generally showing only a subtle increase in VAF (mean, 0.56%) over the course of 44 months, irrespective of the presence of anemia. Specific mutations were associated with different growth rates and propensities to acquire an additional hit. In contrast to smaller clones (<5% VAF), which did not affect overall survival, larger clones were associated with increased risk for death.
Asunto(s)
Anemia/genética , Hematopoyesis , Mutación , Factores de Edad , Anciano , Envejecimiento , Anemia/epidemiología , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Estudios ProspectivosRESUMEN
The 2016 revision of the World Health Organization classification of tumors of hematopoietic and lymphoid tissues is characterized by a closer integration of morphology and molecular genetics. Notwithstanding, the myelodysplastic syndrome (MDS) with isolated del(5q) remains so far the only MDS subtype defined by a genetic abnormality. Approximately half of MDS patients carry somatic mutations in spliceosome genes, with SF3B1 being the most commonly mutated one. SF3B1 mutation identifies a condition characterized by ring sideroblasts (RS), ineffective erythropoiesis, and indolent clinical course. A large body of evidence supports recognition of SF3B1-mutant MDS as a distinct nosologic entity. To further validate this notion, we interrogated the data set of the International Working Group for the Prognosis of MDS (IWG-PM). Based on the findings of our analyses, we propose the following diagnostic criteria for SF3B1-mutant MDS: (1) cytopenia as defined by standard hematologic values, (2) somatic SF3B1 mutation, (3) morphologic dysplasia (with or without RS), and (4) bone marrow blasts <5% and peripheral blood blasts <1%. Selected concomitant genetic lesions represent exclusion criteria for the proposed entity. In patients with clonal cytopenia of undetermined significance, SF3B1 mutation is almost invariably associated with subsequent development of overt MDS with RS, suggesting that this genetic lesion might provide presumptive evidence of MDS in the setting of persistent unexplained cytopenia. Diagnosis of SF3B1-mutant MDS has considerable clinical implications in terms of risk stratification and therapeutic decision making. In fact, this condition has a relatively good prognosis and may respond to luspatercept with abolishment of the transfusion requirement.
Asunto(s)
Médula Ósea/metabolismo , Eritropoyesis , Mutación , Síndromes Mielodisplásicos , Fosfoproteínas/genética , Factores de Empalme de ARN/genética , Humanos , Síndromes Mielodisplásicos/clasificación , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/terapia , Pronóstico , Medición de RiesgoRESUMEN
PURPOSE OF REVIEW: Clinical and experimental studies have uncovered relevant clinical implications of clonal hematopoiesis. However, the true magnitude of this process, clonal dynamics over time and mechanisms of progression into overt malignancy remain to be largely elucidated. In this article, the consequences of clonal hematopoiesis, its significance in the context of cytopenia, and its implications in the clinical management of patients with myeloid malignancies are reviewed and discussed. RECENT FINDINGS: Clonal hematopoiesis has been associated with higher risk of hematologic cancers, as well as of death from cardiovascular causes. Clonal hematopoiesis has been proven clinically relevant in the context of disorders characterized by peripheral blood cytopenia, including aplastic anemia, cytopenia of undetermined significance, as well as unexplained anemia of the elderly. SUMMARY: The available evidence has been proving the utility of somatic mutational analysis in patients with unexplained cytopenia, as well as in those receiving a diagnosis of myeloid neoplasm, enabling more accurate diagnosis, risk assessment, effective therapeutic strategies and residual disease monitoring. The access to a minimally invasive assessment is paving the way for screening programs of clonal hematopoiesis in individuals with absent or mild hematologic phenotype, as well as for therapeutic targeting of preleukemia cells.