Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biomark Res ; 12(1): 35, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515166

RESUMEN

Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.

2.
J Control Release ; 354: 755-769, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36706838

RESUMEN

Mesenchymal stromal/stem cells (MSCs) perform their therapeutic effects through various mechanisms, including their ability to differentiate, producing different growth factors, immunomodulatory factors, and extracellular vesicles (EVs). In addition to the mentioned mechanisms, a new aspect of the therapeutic potential of MSCs has recently been noticed, which occurs through mitochondrial transfer. Various methods of MSCs mitochondria transfer have been used in studies to benefit from their therapeutic potential. Among these methods, mitochondrial transfer after MSCs transplantation in cell-to-cell contact, EVs-mediated transfer of mitochondria, and the use of MSCs isolated mitochondria (MSCs-mt) are well studied. Pathological conditions can affect the cells in the damaged microenvironment and lead to cells mitochondrial damage. Since the defect in the mitochondrial function of the cell leads to a decrease in ATP production and the subsequent cell death, restoring the mitochondrial content, functions, and hemostasis can affect the functions of the damaged cell. Various studies show that the transfer of MSCs mitochondria to other cells can affect vital processes such as proliferation, differentiation, cell metabolism, inflammatory responses, cell senescence, cell stress, and cell migration. These changes in cell attributes and behavior are very important for therapeutic purposes. For this reason, their investigation can play a significant role in the direction of the researchers'.


Asunto(s)
Vesículas Extracelulares , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Diferenciación Celular , Movimiento Celular , Mitocondrias/metabolismo , Vesículas Extracelulares/metabolismo
3.
Regen Ther ; 24: 630-641, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38034858

RESUMEN

Recently, the demand for organ transplantation has promptly increased due to the enhanced incidence of body organ failure, the increasing efficiency of transplantation, and the improvement in post-transplant outcomes. However, due to a lack of suitable organs for transplantation to fulfill current demand, significant organ shortage problems have emerged. Developing efficient technologies in combination with tissue engineering (TE) has opened new ways of producing engineered tissue substitutes. The use of natural nanoparticles (NPs) such as nanocellulose (NC) and nano-lignin should be used as suitable candidates in TE due to their desirable properties. Many studies have used these components to form scaffolds and three-dimensional (3D) cultures of cells derived from different tissues for tissue repair. Interestingly, these natural NPs can afford scaffolds a degree of control over their characteristics, such as modifying their mechanical strength and distributing bioactive compounds in a controlled manner. These bionanomaterials are produced from various sources and are highly compatible with human-derived cells as they are derived from natural components. In this review, we discuss some new studies in this field. This review summarizes the scaffolds based on NC, counting nanocrystalline cellulose and nanofibrillated cellulose. Also, the efficient approaches that can extract cellulose with high purity and increased safety are discussed. We concentrate on the most recent research on the use of NC-based scaffolds for the restoration, enhancement, or replacement of injured organs and tissues, such as cartilage, skin, arteries, brain, and bone. Finally, we suggest the experiments and promises of NC-based TE scaffolds.

4.
Heliyon ; 9(5): e15489, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37153436

RESUMEN

Diabetes is a highly common metabolic disorder in advanced societies. One of the causes of diabetes is insulin resistance, which is associated with a loss of sensitivity to insulin-sensitive cells. Insulin resistance develops in the body of a person prone to diabetes many years before diabetes development. Insulin resistance is associated with complications such as hyperglycemia, hyperlipidemia, and compensatory hyperinsulinemia and causes liver inflammation, which, if left untreated, can lead to cirrhosis, fibrosis, and even liver cancer. Metformin is the first line of treatment for patients with diabetes, which lowers blood sugar and increases insulin sensitivity by inhibiting gluconeogenesis in liver cells. The use of metformin has side effects, including a metallic taste in the mouth, vomiting, nausea, diarrhea, and upset stomach. For this reason, other treatments, along with metformin, are being developed. Considering the anti-inflammatory role of mesenchymal stem cells (MSCs) derived exosomes, their use seems to help improve liver tissue function and prevent damage caused by inflammation. This study investigated the anti-inflammatory effect of Wharton's jelly MSCs derived exosomes in combination with metformin in the HepG2 cells insulin resistance model induced by high glucose. This study showed that MSCs derived exosomes as an anti-inflammatory agent in combination with metformin could increase the therapeutic efficacy of metformin without needing to change metformin doses by decreasing inflammatory cytokines production, including IL-1, IL-6, and TNF-α and apoptosis in HepG2 cells.

5.
Biomed Pharmacother ; 162: 114615, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37011484

RESUMEN

Cell therapy is one of the methods that have shown promising results in treating diseases in recent decades. However, the use of different types of cells comes with limitations. The application of immune cells in cell therapy can lead to cytokine storms and inappropriate responses to self-antigens. Also, the use of stem cells has the potential to create tumors. Also, cells may not migrate to the injury site after intravenous injection. Therefore, using exosomes from different cells as therapeutic candidates were proposed. Due to their small size and favorable characteristics, such as biocompatibility and immunocompatibility, the easy storage and isolation, exosomes have attracted much attention. They are used in treating many diseases, including cardiovascular diseases, orthopedic diseases, autoimmune diseases, and cancer. However, the results of various studies have shown that the therapeutic efficiency of exosomes (Exo) can be increased by loading different drugs and microRNAs inside them (encapsulated exosomes). Therefore, analyzing studies investigating encapsulated exosomes' therapeutic ability is critical. In this study, we have examined the studies related to the use of encapsulated exosomes in treating diseases such as cancer and infectious diseases and their use in regenerative medicine. Compared to intact exosomes, the results show that the application of encapsulated exosomes has a higher therapeutic ability. Therefore it is suggested to use this method depending on the treatment type to increase the treatment's efficiency.


Asunto(s)
Exosomas , MicroARNs , Exosomas/metabolismo , MicroARNs/metabolismo , Células Madre , Medicina Regenerativa
6.
Biomed Pharmacother ; 159: 114195, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36630847

RESUMEN

Multiple sclerosis (MS) is known as a chronic inflammatory disease (CID) that affects the central nervous system and leads to nerve demyelination. However, the exact cause of MS is unknown, but immune system regulation and inhibiting the function of inflammatory pathways may have a beneficial effect on controlling and improving the disease. Studies show that probiotics can alter the gut microbiome, thereby improving and affecting the immune system and inflammatory responses in patients with MS. The results show that probiotics have a good effect on the recovery of patients with MS in humans and animals. The present study investigated the effect of probiotics and possible therapeutic mechanisms of probiotics on immune cells and inflammatory cytokines. This review article showed that probiotics could improve immune cells and inflammatory cytokines in patients with MS and can play an effective role in disease management and control.


Asunto(s)
Esclerosis Múltiple , Probióticos , Animales , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Sistema Nervioso Central , Inmunidad , Probióticos/farmacología , Probióticos/uso terapéutico , Citocinas
7.
Pathol Res Pract ; 241: 154280, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36580795

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19) which has emerged as a global health crisis. Recently, more than 50 different types of potential COVID-19 vaccines have been developed to elicit a strong immune response against SARS-CoV-2. However, genetic mutations give rise to the new variants of SARS-CoV-2 which is highly associated with the reduced effectiveness of COVID-19 vaccines. There is still no efficient antiviral agent to specifically target the SARS-CoV-2 infection and treatment of COVID-19. Therefore, understanding the molecular mechanisms underlying the pathogenesis of SARS-CoV-2 may contribute to discovering a novel potential therapeutic approach to the management of COVID-19. Recently, extracellular vesicle (EV)-based therapeutic strategies have received great attention on account of their potential benefits in the administration of viral diseases. EVs are extracellular vesicles containing specific biomolecules which play an important role in cell-to-cell communications. It has been revealed that EVs are involved in the pathogenesis of different inflammatory diseases such as cancer and viral infections. EVs are released from virus-infected cells which could mediate the interaction of infected and uninfected host cells. Hence, these extracellular nanoparticles have been considered a novel approach for drug delivery to mediate the treatment of a wide range of diseases including, COVID-19. EVs are considered a cell-free therapeutic strategy that could ameliorate the cytokine storm and its complications in COVID-19 patients. Furthermore, EV-based cargo delivery such as immunomodulatory agents in combination with antiviral drugs may have therapeutic benefits in patients with SARS-CoV-2 infection. In this review, we will highlight the potential of EVs as a therapeutic candidate in the diagnosis and treatment of COVID-19. Also, we will discuss the future perspectives regarding the beneficial effects of Evs in the development of COVID-19 vaccines.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico
8.
Front Immunol ; 14: 1280601, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022534

RESUMEN

Malignancies contain a relatively small number of Mesenchymal stem/stromal cells (MSCs), constituting a crucial tumor microenvironment (TME) component. These cells comprise approximately 0.01-5% of the total TME cell population. MSC differentiation potential and their interaction with the tumor environment enable these cells to affect tumor cells' growth, immune evasion, metastasis, drug resistance, and angiogenesis. This type of MSC, known as cancer-associated mesenchymal stem/stromal cells (CA-MSCs (interacts with tumor/non-tumor cells in the TME and affects their function by producing cytokines, chemokines, and various growth factors to facilitate tumor cell migration, survival, proliferation, and tumor progression. Considering that the effect of different cells on each other in the TME is a multi-faceted relationship, it is essential to discover the role of these relationships for targeting in tumor therapy. Due to the immunomodulatory role and the tissue repair characteristic of MSCs, these cells can help tumor growth from different aspects. CA-MSCs indirectly suppress antitumor immune response through several mechanisms, including decreasing dendritic cells (DCs) antigen presentation potential, disrupting natural killer (NK) cell differentiation, inducing immunoinhibitory subsets like tumor-associated macrophages (TAMs) and Treg cells, and immune checkpoint expression to reduce effector T cell antitumor responses. Therefore, if these cells can be targeted for treatment so that their population decreases, we can hope for the treatment and improvement of the tumor conditions. Also, various studies show that CA-MSCs in the TME can affect other vital aspects of a tumor, including cell proliferation, drug resistance, angiogenesis, and tumor cell invasion and metastasis. In this review article, we will discuss in detail some of the mechanisms by which CA-MSCs suppress the innate and adaptive immune systems and other mechanisms related to tumor progression.


Asunto(s)
Células Madre Mesenquimatosas , Neoplasias , Humanos , Citocinas/metabolismo , Diferenciación Celular , Inmunidad , Células Madre Mesenquimatosas/metabolismo , Microambiente Tumoral
9.
Iran J Allergy Asthma Immunol ; 22(3): 233-244, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37524660

RESUMEN

An imbalance between regulatory T (Treg) and T-helper (Th)-17 cells has been implicated in the pathogenesis of coronavirus disease 2019 (COVID-19). Mesenchymal stem cells (MSCs) exert immunomodulatory properties through secreting exosomes. This study aimed to assess the effect of MSC-derived exosomes (MSC-Exo) on the differentiation of peripheral blood mononuclear cells (PBMCs) into  Tregs from patients with COVID-19. Exosomes were isolated from adipose tissue-derived MSCs. PBMCs were separated from the whole blood of COVID-19 patients (n=20). Treg frequency was assessed before and 48 hours after treatment of PBMCs with MSC-Exo using flow cytometry. Expression of FOXP3 and cytokine genes, and the concentration of cytokines associated with Tregs, were assessed before and after treatment with MSC-Exo. The frequency of CD4+CD25+CD127-  Tregs was significantly higher after treating PBMCs with MSC-Exo (6.695±2.528) compared to before treatment (4.981±2.068). The expressions of transforming growth factor (TGF)-ß1, interleukin (IL)-10, and FOXP3 were significantly upregulated in MSC-Exo-treated PBMCs. The concentration of IL-10 increased significantly after treatment (994.7±543.9 pg/mL) of PBMCs with MSC-Exo compared with before treatment (563.5±408.6 pg/mL). The concentration of TGF-ß was significantly higher in the supernatant of PBMCs after treatment with MSC-Exo (477.0±391.1 pg/mL) than PBMCs before treatment (257.7±226.3 pg/mL). MSC-Exo has the potential to raise anti-inflammatory responses by induction of  Tregs, potentiating its therapeutic effects in COVID-19.


Asunto(s)
COVID-19 , Exosomas , Células Madre Mesenquimatosas , Humanos , Linfocitos T Reguladores , Leucocitos Mononucleares , Células Madre Mesenquimatosas/metabolismo , Factores de Transcripción Forkhead/metabolismo
10.
Front Immunol ; 13: 865888, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464407

RESUMEN

Various factors, including viral and bacterial infections, autoimmune responses, diabetes, drugs, alcohol abuse, and fat deposition, can damage liver tissue and impair its function. These factors affect the liver tissue and lead to acute and chronic liver damage, and if left untreated, can eventually lead to cirrhosis, fibrosis, and liver carcinoma. The main treatment for these disorders is liver transplantation. Still, given the few tissue donors, problems with tissue rejection, immunosuppression caused by medications taken while receiving tissue, and the high cost of transplantation, liver transplantation have been limited. Therefore, finding alternative treatments that do not have the mentioned problems is significant. Cell therapy is one of the treatments that has received a lot of attention today. Hepatocytes and mesenchymal stromal/stem cells (MSCs) are used in many patients to treat liver-related diseases. In the meantime, the use of mesenchymal stem cells has been studied more than other cells due to their favourable characteristics and has reduced the need for liver transplantation. These cells increase the regeneration and repair of liver tissue through various mechanisms, including migration to the site of liver injury, differentiation into liver cells, production of extracellular vesicles (EVs), secretion of various growth factors, and regulation of the immune system. Notably, cell therapy is not entirely excellent and has problems such as cell rejection, undesirable differentiation, accumulation in unwanted locations, and potential tumorigenesis. Therefore, the application of MSCs derived EVs, including exosomes, can help treat liver disease and prevent its progression. Exosomes can prevent apoptosis and induce proliferation by transferring different cargos to the target cell. In addition, these vesicles have been shown to transport hepatocyte growth factor (HGF) and can promote the hepatocytes'(one of the most important cells in the liver parenchyma) growths.


Asunto(s)
Vesículas Extracelulares , Hepatopatías , Células Madre Mesenquimatosas , Vesículas Extracelulares/metabolismo , Fibrosis , Humanos , Inmunomodulación , Hepatopatías/etiología , Hepatopatías/metabolismo , Hepatopatías/terapia , Células Madre Mesenquimatosas/metabolismo
11.
Biomed Pharmacother ; 152: 113211, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35696942

RESUMEN

Cell therapy is one of the new treatment methods in which mesenchymal stem/stromal cell (MSCs) transplantation is one of the cells widely used in this field. The results of MSCs application in the clinic prove their therapeutic efficacy. For this reason, many clinical trials have been designed based on the application of MSCs for various diseases, especially inflammatory disease and regenerative medicine. These cells perform their therapeutic functions through multiple mechanisms, including the differentiative potential, immunomodulatory properties, production of therapeutic exosomes, production of growth factors and cytokines, and anti-apoptotic effects. Exosomes are nanosized extracellular vesicles (EVs) that change target cell functions by transferring different cargos. The therapeutic ability of MSCs-derived exosomes has been demonstrated in many studies. However, some limitations, such as the low production of exosomes by cells and the need for large amounts of them and also their limited therapeutic ability, have encouraged researchers to find methods that increase exosomes' therapeutic potential. One of these methods is the spheroid culture of MSCs. Studies show that the three-dimensional culture (3DCC) of MSCs in the form of multicellular spheroids increases the therapeutic efficacy of these cells in laboratory and animal applications. In addition, the spheroid culture of MSCs leads to enhanced therapeutic properties of their exosomes and production rate. Due to the novelty of the field of using 3DCC MSCs-derived exosomes, examination of their properties and the results of their therapeutic application can increase our view of this field. This review discussed MSCs and their exosomes enhanced properties in spheroid culture.


Asunto(s)
Exosomas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Exosomas/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Esferoides Celulares
12.
Biomed Pharmacother ; 156: 113943, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36411629

RESUMEN

Cell therapy is one of the newest therapeutic approaches for treating tissue destruction diseases and replacing damaged parts in defective tissues. Among different cells, mesenchymal stem cells (MSCs) have received a lot of attention due to their advantages and desirable properties. Also, MSCs-derived secretome, which includes various growth factors, cytokines, and extracellular vesicles (EVs), is used in the treatment of different types of diseases. However, the application of MSCs in an intact form brings their functionality with limitations. For this reason, different methods are recommended to increase their efficiency and the extracellular vesicles derived from them. One of these methods is gene editing of these cells. Among the different techniques for MSCs gene editing, CRISPR/Cas9 can increase the therapeutic potential of MSCs in a targeted manner due to its advantages. In order to achieve the desired result, various genes have been manipulated in MSCs, including genes involved in stemness, aging, migration, proliferation, survival, and inflammatory responses. Engineering MSCs with this method affects the cells' characteristics, changes their cytokine and different growth factors secretions, and increases their therapeutic efficiency.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Sistemas CRISPR-Cas/genética , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos
13.
Biomark Res ; 10(1): 30, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550636

RESUMEN

Exosomes, ranging in size from 30 to 150 nm as identified initially via electron microscopy in 1946, are one of the extracellular vesicles (EVs) produced by many cells and have been the subject of many studies; initially, they were considered as cell wastes with the belief that cells produced exosomes to maintain homeostasis. Nowadays, it has been found that EVs secreted by different cells play a vital role in cellular communication and are usually secreted in both physiological and pathological conditions. Due to the presence of different markers and ligands on the surface of exosomes, they have paracrine, endocrine and autocrine effects in some cases. Immune cells, like other cells, can secrete exosomes that interact with surrounding cells via these vesicles. Immune system cells-derived exosomes (IEXs) induce different responses, such as increasing and decreasing the transcription of various genes and regulating cytokine production. This review deliberate the function of innate and acquired immune cells derived exosomes, their role in the pathogenesis of immune diseases, and their therapeutic appliances.

14.
Stem Cell Rev Rep ; 18(3): 933-951, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34169411

RESUMEN

Musculoskeletal disorders (MSDs) are conditions that can affect muscles, bones, and joints. These disorders are very painful and severely limit patients' mobility and are more common in the elderly. MSCs are multipotent stem cells isolated from embryonic (such as the umbilical cord) and mature sources (such as adipose tissue and bone marrow). These cells can differentiate into various cells such as osteoblasts, adipocytes, chondrocytes, NP-like cells, Etc. Due to MSC characteristics such as immunomodulatory properties, ability to migrate to the site of injury, recruitment of cells involved in repair, production of growth factors, and large amount production of extracellular vesicles, these cells have been used in many regenerative-related medicine studies. Also, MSCs produce different types of EVs, such as exosomes, to the extracellular environment. Exosomes reflect MSCs' characteristics and do not have cell therapy-associated problems because they are cell-free. These vesicles carry proteins, nucleic acids, and lipids to the host cell and change their function. This review focuses on MSCs and MSCs exosomes' role in repairing dense connective tissues such as tendons, cartilage, invertebrate disc, bone fracture, and osteoporosis treatment.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Enfermedades Musculoesqueléticas , Anciano , Exosomas/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Enfermedades Musculoesqueléticas/metabolismo , Enfermedades Musculoesqueléticas/terapia , Medicina Regenerativa , Cordón Umbilical
15.
Eur J Pharmacol ; 933: 175267, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36122756

RESUMEN

The ongoing COVID-19 pandemic is still a challenging problem in the case of infection treatment. The immunomodulatory effect of Nanocurcumin was investigated in the present study in an attempt to counterbalance the immune response and improve the patients' clinical symptoms. 60 confirmed COVID-19 patients and 60 healthy controls enrolled in the study. COVID-19 patients were divided into Nanocurcumin and placebo received groups. Due to the importance of the role of NK cells in this disease, the frequency, cytotoxicity, receptor gene expression of NK cells, and serum secretion levels of inflammatory cytokines IL-1ß, IL-6, TNF-α, as well as circulating C5a as a chemotactic factor an inflammatory mediator was evaluated by flow cytometry, real-time PCR and enzyme-linked immunosorbent assay in both experimental groups before and after the intervention. Given the role of measured factors in the progression and pathogenesis of COVID-19 disease, the results can help find appropriate treatments. The results of this study indicated that the Nanocurcumin could significantly increase the frequency and function of NK cells compared to the placebo-treated group. As an immunomodulatory agent, Nanocurcumin may be a helpful choice to improve NK cell function in COVID-19 patients and improve the clinical outcome of patients.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Estudios de Casos y Controles , Factores Quimiotácticos/farmacología , Citocinas/metabolismo , Humanos , Inmunidad , Mediadores de Inflamación/farmacología , Interleucina-6 , Células Asesinas Naturales , Pandemias , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda