Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
2.
J Biol Chem ; 270(49): 29229-35, 1995 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-7493952

RESUMEN

Chloroaromatics, a major class of industrial pollutants, may be oxidatively metabolized to chlorocatechols by soil and water microorganisms that have evolved catabolic activities toward these xenobiotics. We show here that 4-chlorocatechol can be further transformed by enzymes of the ubiquitous 3-oxoadipate pathway. However, whereas chloromuconate cycloisomerases catalyze the dechlorination of 3-chloro-cis,cis-muconate to form cis-dienelactone, muconate cycloisomerases catalyze a novel reaction, i.e. the dechlorination and concomitant decarboxylation to form 4-methylenebut-2-en-4-olide (protoanemonin), an ordinarily plant-derived antibiotic that is toxic to microorganisms.


Asunto(s)
Adipatos/metabolismo , Antibacterianos/metabolismo , Catecoles/metabolismo , Furanos/metabolismo , Liasas Intramoleculares , Ecología , Isomerasas/fisiología , Pseudomonas/metabolismo
3.
Appl Environ Microbiol ; 63(2): 427-34, 1997 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16535507

RESUMEN

A rapid decline in cell viability of different PCB-metabolizing organisms was observed in soil microcosms amended with 4-chlorobiphenyl. The toxic effect could not be attributed to 4-chlorobiphenyl but was due to a compound formed from the transformation of 4-chlorobiphenyl by the natural microflora. Potential metabolites of 4-chlorobiphenyl, 4-chlorobenzoate and 4-chlorocatechol, caused similar toxic effects. We tested the hypothesis that the toxic effects are due to the formation of protoanemonin, a plant-derived antibiotic, which is toxic to microorganisms and which has been shown to be formed from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. Consistent with our hypothesis, addition to soil microcosms of strains able to reroute intermediary 4-chlorocatechol from the 3-oxoadipate pathway and into the meta-cleavage pathway or able to mineralize 4-chlorocatechol by a modified ortho-cleavage pathway resulted in reversal of this toxic effect. Surprisingly, while direct addition of protoanemonin influenced both the viability of fungi and the microbial activity of the soil microcosm, there was little effect on bacterial viability due to its rapid degradation. This rapid degradation accounts for our inability to detect this compound in soils amended with 4-chlorocatechol. However, significant accumulation of protoanemonin was observed by a mixed bacterial community enriched with benzoate or a mixture of benzoate and 4-methylbenzoate, providing the metabolic potential of the soil to form protoanemonin. The effects of soil heterogeneity and microcosm interactions are discussed in relation to the different effects of protoanemonin when applied as a shock load and when it is produced in small amounts from precursors over long periods.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda