Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Chem Chem Phys ; 25(35): 23867-23878, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37642159

RESUMEN

The strategy of using a bulk-heterojunction light-absorbing layer has led to the most efficient organic solar cells. However, optimising the blend morphology to maximise light absorption, charge generation and extraction can be challenging. Homojunction devices containing a single component have the potential to overcome the challenges associated with bulk heterojunction films. A strategy towards this goal is to increase the dielectric constant of the organic semiconductor to ≈10, which in principle would lead to free charge carrier generation upon photoexcitation. However, the factors that affect the thin film dielectric constants are still not well understood. In this work we report an organic semiconductor material that can be solution processed or vacuum evaporated to form good quality thin films to explore the effect of chromophore structure and film morphology on the dielectric constant and other optoelectronic properties. 2,2'-[(4,4,4',4'-Tetrakis{2-[2-methoxyethoxy]ethyl}-4H,4'H-{2,2'-bi[cyclo-penta[2,1-b:3,4-b']dithiophene]}-6,6'-diyl)bis(methaneylylidene)]dimalononitrile [D(CPDT-DCV)] was designed to have high electron-affinity end groups and low ionisation-potential central moieties. It can be processed from solution or be thermally evaporated, with the film morphology changing from face-on to a herringbone arrangement upon solvent or thermal annealing. The glycol solubilising groups led to the static dielectric constant (taken from capacitance measurements) of the films to be between 6 and 7 (independent of processing conditions), while the optical frequency dielectric constant depended on the processing conditions. The less ordered solution processed film was found to have the lowest optical frequency dielectric constant of 3.6 at 2.0 × 1014 Hz, which did not change upon annealing. In contrast, the more ordered evaporated film had an optical frequency dielectric constant 20% higher at 4.2 and thermal annealing further increased it to 4.5, which is amongst the highest reported for an organic semiconductor at that frequency. Finally, the more ordered evaporated films had more balanced charge transport, which did not change upon annealing.

2.
J Org Chem ; 85(12): 8074-8084, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32407087

RESUMEN

High-level quantum chemical calculations were used to elucidate the gas- and solution-phase conformational equilibria for a series of symmetrically substituted (thio)ureas, (thio)squaramides, and croconamides. Gas-phase calculations predict that the thermodynamic conformer of many of these anion receptors is not the dual-hydrogen-bond-facilitating anti-anti conformer as is commonly assumed. For N,N'-diaryl thiosquaramides and croconamides, the syn-syn conformer is typically the predominant conformer. Solution-phase calculations show that the anti-anti conformer is increasingly stabilized as the polarity of the solvent increases. However, the syn-syn conformer remains the lowest energy conformation for croconamides. These predictions are used to explain the acidity versus chloride binding affinity correlations recently reported for some of these compounds. The chloride binding constants for thioureas and croconamides are significantly lower than expected on the basis of their pKa values, and this may be due in part to the need for these receptors to reorganize into the anti-anti conformer. Experimental NMR nuclear Overhauser effect (NOE) measurements of an asymmetrically substituted squaramide and its thio analogue are consistent with the syn-syn conformation being predominant at 298 K. The conformational equilibria should therefore be an important consideration for the design and development of future anion receptors and organocatalysts.

3.
ACS Appl Mater Interfaces ; 16(22): 28958-28968, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38787283

RESUMEN

The advent of small molecule non-fullerene acceptor (NFA) materials for organic photovoltaic (OPV) devices has led to a series of breakthroughs in performance and device lifetime. The most efficient OPV devices have a combination of electron donor and acceptor materials that constitute the light absorbing layer in a bulk heterojunction (BHJ) structure. For many BHJ-based devices reported to date, the weight ratio of donor to acceptor is near equal. However, the morphology of such films can be difficult to reproduce and manufacture at scale. There would be an advantage in developing a light harvesting layer for efficient OPV devices that contains only a small amount of either the donor or acceptor. In this work we explore low donor content OPV devices composed of the polymeric donor PM6 blended with high performance NFA materials, Y6 or ITIC-4F. We found that even when the donor:acceptor weight ratio was only 1:10, the OPV devices still have good photoconversion efficiencies of around 6% and 5% for Y6 and ITIC-4F, respectively. It was found that neither charge mobility nor recombination rates had a strong effect on the efficiency of the devices. Rather, the overall efficiency was strongly related to the film absorption coefficient and maintaining adequate interfacial surface area between donor and acceptor molecules/phases for efficient exciton dissociation.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38049378

RESUMEN

Three-dimensional (3D) perovskite solar cells (PSCs) containing additives capable of forming two-dimensional (2D) structures in neat films have attracted attention due to their ability to enhance power conversion efficiency (PCE) in combination with improved operational stability. Herein, a newly designed fluorinated ammonium salt, 2-(perfluorophenyl)ethanaminium bromide:chloride50:50 (FEABr:Cl50:50), is introduced into CsMAFAPbI3-based PSCs with a standard n-i-p architecture. FEABr:Cl50:50 was used as an additive in the tin(IV) oxide (SnO2) electron transporting layer (ETL) as well as a surface treatment for the perovskite film. Used in this dual way, the additive was found to passivate charge-trapping defects within the SnO2 ETL and regulate the crystal growth of the perovskite layer. When FEABr:Cl50:50 was deposited onto the surface of the 3D perovskite film, it formed a thin hydrophobic 2D capping layer. Adopting this dual strategy led to the perovskite film having larger grain sizes, improved quality, and overall better device performance. As a result, the best-performing device exhibited a PCE of over 23% with negligible hysteresis in an n-i-p device architecture with an area of 0.2 cm2. Furthermore, unencapsulated devices with the hydrophobic 2D capping layer showed improved stability compared to the control device when measured under continuous light irradiation at a maximum power point (MPP) at 80 ± 5 °C in a humid (≈50%) environment.

5.
J Phys Chem Lett ; 9(3): 665-671, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29356541

RESUMEN

Donor-acceptor Stenhouse adducts (DASAs) are a new class of photoswitching molecules with excellent fatigue resistance and synthetic tunability. Here, tandem ion mobility mass spectrometry coupled with laser excitation is used to characterize the photocyclization reaction of isolated, charge-tagged DASA molecules over the 450-580 nm range. The experimental maximum response at 530 nm agrees with multireference perturbation theory calculations for the S1 ← S0 transition maximum at 533 nm. Photocyclization in the gas phase involves absorption of at least two photons; the first photon induces Z-E isomerization from the linear isomer to metastable intermediate isomers, while the second photon drives another E-Z isomerization and 4π-electrocyclization reaction. Cyclization is thermally reversible in the gas phase with collisional excitation.

6.
Chem Sci ; 9(43): 8242-8252, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30542573

RESUMEN

The first in-depth, systematic study of the photoswitching properties of Donor-Acceptor Stenhouse Adducts (DASAs) is reported. Barbituric acid derived DASAs functionalised with 14 different amines ranging from dimethylamine to 4-methoxy-N-methylaniline were structurally characterised in solution using 1H and 13C NMR spectroscopy and, in eight cases, in the solid state by single crystal X-ray diffraction. The distribution of coloured and colourless isomers in the dark, their photostationary states under irradiation, apparent thermal half-lives, and fatigue resistance are systematically compared. A simple kinetic model is used to characterise photoswitching behaviour and reveals that minor structural modifications can significantly improve the photoswitching properties of DASA photochromes. These modifications result in excellent photoswitching properties for '1st generation' DASAs in chloroform, including exceptional fatigue resistance, opening the door for these photochromic molecules to find widespread applications.

7.
Chem Commun (Camb) ; 52(93): 13576-13579, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27805187

RESUMEN

We report photochromic donor-acceptor Stenhouse adducts (DASAs) capable of fully reversible photoisomerization with visible light in organic solvents including chloroform, acetonitrile and benzene. The rates of photoisomerization and thermal reversion can be tuned by altering the electronics of the donor adduct. X-Ray crystallography and photo-NMR experiments unambiguously establish molecular structures.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda