Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Synchrotron Radiat ; 31(Pt 5): 1179-1188, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39105531

RESUMEN

The paper considers the possibility of using the diamond-silicon carbide composite Skeleton® with a technological coating of polycrystalline silicon as a substrate for X-ray mirrors used with powerful synchrotron radiation sources (third+ and fourth generation). Samples were studied after polishing to provide the following surface parameters: root-mean-square flatness ≃ 50 nm, micro-roughness on the frame 2 µm × 2 µm σ ≃ 0.15 nm. The heat capacity, thermal conductivity and coefficient of linear thermal expansion were investigated. For comparison, a monocrystalline silicon sample was studied under the same conditions using the same methods. The value of the coefficient of linear thermal expansion turned out to be higher than that of monocrystalline silicon and amounted to 4.3 × 10-6 K-1, and the values of thermal conductivity (5.0 W cm-1 K-1) and heat capacity (1.2 J K-1 g-1) also exceeded the values for Si. Thermally induced deformations of both Skeleton® and monocrystalline silicon samples under irradiation with a CO2 laser beam have also been experimentally studied. Taking into account the obtained thermophysical constants, the calculation of thermally induced deformation under irradiation with hard (20 keV) X-rays showed almost three times less deformation of the Skeleton® sample than of the monocrystalline silicon sample.

2.
Ultramicroscopy ; 202: 76-86, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31003162

RESUMEN

Multilayer normal-incidence mirrors allow the numerical aperture (NA=0.3-0.5) of a projection lens to be significantly increased in the spectral ranges of the water (λ = 2.3-4.4 nm) and carbon (λ = 4.4-7 nm) windows, in comparison with the Fresnel zone plates. The low depth of focus of high-aperture optics (tens of nm) makes it possible to use z-tomography to reconstruct the structure of samples in soft X-ray microscopy. The presence of strong absorption prevents the direct use of a powerful deconvolution apparatus developed for fluorescence optical microscopy to improve the clarity of the image. In this article, the "intensity restoration algorithm" is proposed that takes into account the absorption effect before standard deconvolution. For an imagine lens with NA = 0.3 and a working wavelength of 3.37 nm, the results of simulating an image of a protein cell and its deconvolutionary processing are presented, before and after applying the proposed method. After its application, the deconvolution efficiency is significantly increased. A "full-period" resolution of 40 nm was obtained for the image of a simulated protein cell.


Asunto(s)
Microscopía Fluorescente/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Diseño de Equipo/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Lentes , Óptica y Fotónica/métodos , Rayos X
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda