Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Annu Rev Cell Dev Biol ; 29: 27-61, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24099083

RESUMEN

Morphogenesis is the remarkable process by which cells self-assemble into complex tissues and organs that exhibit specialized form and function during embryological development. Many of the genes and chemical cues that mediate tissue and organ formation have been identified; however, these signals alone are not sufficient to explain how tissues and organs are constructed that exhibit their unique material properties and three-dimensional forms. Here, we review work that has revealed the central role that physical forces and extracellular matrix mechanics play in the control of cell fate switching, pattern formation, and tissue development in the embryo and how these same mechanical signals contribute to tissue homeostasis and developmental control throughout adult life.


Asunto(s)
Fenómenos Biomecánicos , Desarrollo Embrionario , Animales , Citoesqueleto , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Morfogénesis , Transducción de Señal
2.
Am J Respir Cell Mol Biol ; 60(1): 117-127, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30156429

RESUMEN

Angiogenesis, the formation of new blood capillaries, plays a key role in organ development and regeneration. Inhibition of lung angiogenesis through the blockade of angiogenic signaling pathways impairs compensatory and regenerative lung growth after unilateral pneumonectomy (PNX). The Hippo signaling transducer, Yes-associated protein (YAP) 1 binds to TEA domain transcription factor (TEAD) and controls organ size and regeneration. However, the role of endothelial YAP1 in lung vascular and alveolar morphogenesis remains unclear. In this report, we demonstrate that knockdown of YAP1 in endothelial cells (ECs) decreases angiogenic factor receptor Tie2 expression, and inhibits EC sprouting and epithelial cell budding in vitro and vascular and alveolar morphogenesis in the gel implanted on the mouse lung. The expression levels of YAP1, TEAD1, and Tie2 increase in ECs isolated from the remaining mouse lungs after unilateral PNX and vascular formation is stimulated in the post-PNX mouse lungs. Knockdown of endothelial YAP1 inhibits compensatory lung growth and vascular and alveolar morphogenesis after unilateral PNX. These findings suggest that endothelial YAP1 is required for lung vascular and alveolar regeneration and modulation of YAP1 in ECs may be novel interventions for the improvement of lung regeneration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Angiopoyetinas/metabolismo , Pulmón/citología , Organogénesis , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiología , Receptor TIE-2/metabolismo , Regeneración , Proteínas Adaptadoras Transductoras de Señales/genética , Angiopoyetinas/genética , Animales , Proteínas de Ciclo Celular , Proliferación Celular , Humanos , Pulmón/metabolismo , Ratones , Ratones Noqueados , Neovascularización Fisiológica , Fosfoproteínas/genética , Neumonectomía , Receptor TIE-2/genética , Transducción de Señal , Factores de Transcripción , Proteínas Señalizadoras YAP
3.
Am J Respir Cell Mol Biol ; 58(2): 194-207, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28915063

RESUMEN

Pulmonary hypertension (PH) is a devastating pulmonary vascular disease characterized by aberrant muscularization of the normally nonmuscularized distal pulmonary arterioles. The expression of the transcription factor, Twist1, increases in the lungs of patients with pulmonary arterial hypertension. However, the mechanisms by which Twist1 controls the pathogenesis of PH remain unclear. It is becoming clear that endothelial-to-mesenchymal transition (EndMT) contributes to various vascular pathologies, including PH; Twist1 is known to mediate EndMT. In this report, we demonstrate that Twist1 overexpression increases transforming growth factor (TGF) ß receptor2 (TGF-ßR2) expression and Smad2 phosphorylation, and induces EndMT in cultured human pulmonary arterial endothelial (HPAE) cells, whereas a mutant construct of Twist1 at the serine 42 residue (Twist1S42A) fails to induce EndMT. We also implanted fibrin gel supplemented with HPAE cells on the mouse lung, and found that these HPAE cells form vascular structures and that Twist1-overexpressing HPAE cells undergo EndMT in the gel, whereas Twist1S42A-overexpressing cells do not. Furthermore, hypoxia-induced EndMT is inhibited in endothelial cells overexpressing Twist1S42A mutant construct in vitro. Hypoxia-induced accumulation of α-smooth muscle actin-positive cells in the pulmonary arterioles is attenuated in Tie2-specific Twist1 conditional knockout mice in vivo. These findings suggest that Twist1 serine 42 phosphorylation plays a key role in EndMT through TGF-ß signaling and that modulation of Twist1 phosphorylation could be an effective strategy for managing PH.


Asunto(s)
Hipertensión Pulmonar/patología , Proteínas Nucleares/metabolismo , Arteria Pulmonar/patología , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Hipoxia de la Célula/fisiología , Células Cultivadas , Células Endoteliales/metabolismo , Humanos , Pulmón/patología , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteína 1 Relacionada con Twist/genética
4.
Microvasc Res ; 119: 73-83, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29680477

RESUMEN

Mitochondria contribute to key processes of cellular function, while mitochondrial dysfunction is implicated in metabolic disorders, neurodegenerative diseases, and cardiovascular diseases, in which angiogenesis - the formation of new blood capillaries - is dysregulated. The Hippo signaling transducer, Yes-associated protein (YAP1) binds to the TEA domain (TEAD1) transcription factor and controls angiogenesis. YAP1 also regulates glucose metabolism through peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC1α), a major player controlling mitochondrial biogenesis. However, the role of YAP1-TEAD1-PGC1α signaling in mitochondrial structure, cellular metabolism, and angiogenesis in endothelial cells (ECs) remains unclear. We now find that knockdown of TEAD1 decreases the expression of PGC1α and suppresses mitochondrial biogenesis, glycolysis, and oxygen consumption in ECs. A YAP1 mutant construct, YAP1S127A, which stimulates binding of YAP1 to TEAD1, upregulates the expression of PGC1α, induces mitochondrial biogenesis, and increases oxygen consumption and glycolytic flux in ECs; in contrast, YAP1S94A, which fails to bind to TEAD1, attenuates these effects. PGC1α knockdown inhibits YAP1S127A-induced EC sprouting in vitro and vascular morphogenesis in the fibrin gel subcutaneously implanted on mice, while overexpression of PGC1α reverses vascular morphogenesis suppressed by YAP1S94A. These results suggest that YAP1-TEAD1 signaling induces mitochondrial biogenesis in ECs and stimulates angiogenesis through PGC1α. Modulation of YAP1-TEAD1-PGC1α signaling in ECs may provide a novel intervention for angiogenesis-related diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Mitocondrias/metabolismo , Neovascularización Fisiológica , Proteínas Nucleares/metabolismo , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosfoproteínas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Movimiento Celular , Proliferación Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Fibrina/metabolismo , Geles , Glucólisis , Células Endoteliales de la Vena Umbilical Humana/trasplante , Humanos , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/trasplante , Proteínas Nucleares/genética , Consumo de Oxígeno , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Fosfoproteínas/genética , Transducción de Señal , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
5.
Nat Methods ; 11(2): 183-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24317254

RESUMEN

Cell-generated mechanical forces play a critical role during tissue morphogenesis and organ formation in the embryo. Little is known about how these forces shape embryonic organs, mainly because it has not been possible to measure cellular forces within developing three-dimensional (3D) tissues in vivo. We present a method to quantify cell-generated mechanical stresses exerted locally within living embryonic tissues, using fluorescent, cell-sized oil microdroplets with defined mechanical properties and coated with adhesion receptor ligands. After a droplet is introduced between cells in a tissue, local stresses are determined from droplet shape deformations, measured using fluorescence microscopy and computerized image analysis. Using this method, we quantified the anisotropic stresses generated by mammary epithelial cells cultured within 3D aggregates, and we confirmed that these stresses (3.4 nN µm(-2)) are dependent on myosin II activity and are more than twofold larger than stresses generated by cells of embryonic tooth mesenchyme, either within cultured aggregates or in developing whole mouse mandibles.


Asunto(s)
Agregación Celular/fisiología , Embrión de Mamíferos/metabolismo , Glándulas Mamarias Animales/metabolismo , Mesodermo/metabolismo , Estrés Mecánico , Diente/metabolismo , Animales , Fenómenos Biomecánicos , Diferenciación Celular , Embrión de Mamíferos/citología , Femenino , Integrasas/metabolismo , Queratina-14/fisiología , Glándulas Mamarias Animales/citología , Mesodermo/citología , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Morfogénesis , Miosina Tipo II/metabolismo , Diente/crecimiento & desarrollo
6.
Nat Methods ; 11(6): 663-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24793454

RESUMEN

Current in vitro hematopoiesis models fail to demonstrate the cellular diversity and complex functions of living bone marrow; hence, most translational studies relevant to the hematologic system are conducted in live animals. Here we describe a method for fabricating 'bone marrow-on-a-chip' that permits culture of living marrow with a functional hematopoietic niche in vitro by first engineering new bone in vivo, removing it whole and perfusing it with culture medium in a microfluidic device. The engineered bone marrow (eBM) retains hematopoietic stem and progenitor cells in normal in vivo-like proportions for at least 1 week in culture. eBM models organ-level marrow toxicity responses and protective effects of radiation countermeasure drugs, whereas conventional bone marrow culture methods do not. This biomimetic microdevice offers a new approach for analysis of drug responses and toxicities in bone marrow as well as for study of hematopoiesis and hematologic diseases in vitro.


Asunto(s)
Médula Ósea/fisiología , Hematopoyesis , Células Madre Hematopoyéticas/fisiología , Técnicas Analíticas Microfluídicas , Animales , Médula Ósea/química , Técnicas de Cultivo de Célula , Ratones
7.
Am J Respir Cell Mol Biol ; 55(5): 633-644, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27281171

RESUMEN

Idiopathic pulmonary fibrosis is a chronic and progressive lung disease in which microvessel remodeling is deregulated. However, the mechanism by which deregulated angiogenesis contributes to the pathogenesis of pulmonary fibrosis remains unclear. Here we show that a transcription factor, Twist1, controls angiogenesis through the angiopoietin-Tie2 pathway, and that deregulation of this mechanism mediates pathological angiogenesis and collagen deposition in a bleomycin-induced mouse pulmonary fibrosis model. Twist1 knockdown decreases Tie2 expression and attenuates endothelial cell sprouting in vitro. Angiogenesis is also inhibited in fibrin gel implanted on Tie2-specific Twist1 conditional knockout (Twist1fl/fl/Tie2-cre) mouse lung in vivo. Inhibition of Twist1 phosphorylation at the serine 42 (Ser42) residue by treating endothelial cells with a mutant construct (Twist1S42A) decreases Tie2 expression and attenuates angiogenesis compared with full-length Twist1 in vitro and in vivo. Bleomycin challenge up-regulates Twist1 Ser42 phosphorylation and Tie2 expression, increases blood vessel density, and induces collagen deposition in the mouse lung, whereas these effects are attenuated in Twist1fl/fl/Tie2-cre mice or in mice treated with Twist1S42A mutant construct. These results indicate that Twist1 Ser42 phosphorylation contributes to the pathogenesis of bleomycin-induced pulmonary fibrosis through angiopoietin-Tie2 signaling.


Asunto(s)
Neovascularización Fisiológica , Proteínas Nucleares/metabolismo , Fibrosis Pulmonar/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Bleomicina , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibrina/farmacología , Geles , Técnicas de Silenciamiento del Gen , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Fibrosis Pulmonar/patología , Receptor TIE-2/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Am J Respir Cell Mol Biol ; 54(1): 103-13, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26091161

RESUMEN

Angiogenesis, the growth of new blood vessels, plays a key role in organ development, homeostasis, and regeneration. The cooperation of multiple angiogenic factors, rather than a single factor, is required for physiological angiogenesis. Recently, we have reported that soluble platelet-rich plasma (PRP) extract, which contains abundant angiopoietin-1 and multiple other angiogenic factors, stimulates angiogenesis and maintains vascular integrity in vitro and in vivo. In this report, we have demonstrated that mouse PRP extract increases phosphorylation levels of the Wnt coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) and thereby activates angiogenic factor receptor Tie2 in endothelial cells (ECs) and accelerates EC sprouting and lung epithelial cell budding in vitro. PRP extract also increases phosphorylation levels of Tie2 in the mouse lungs and accelerates compensatory lung growth and recovery of exercise capacity after unilateral pneumonectomy in mice, whereas soluble Tie2 receptor or Lrp5 knockdown attenuates the effects of PRP extract. Because human PRP extract is generated from autologous peripheral blood and can be stored at -80°C, our findings may lead to the development of novel therapeutic interventions for various angiogenesis-related lung diseases and to the improvement of strategies for lung regeneration.


Asunto(s)
Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/sangre , Pulmón/irrigación sanguínea , Pulmón/enzimología , Neovascularización Fisiológica , Plasma Rico en Plaquetas/enzimología , Receptor TIE-2/metabolismo , Regeneración , Animales , Línea Celular , Proliferación Celular , Técnicas de Cocultivo , Células Epiteliales/enzimología , Tolerancia al Ejercicio , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/deficiencia , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Pulmón/patología , Pulmón/fisiopatología , Pulmón/cirugía , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Neumonectomía , Interferencia de ARN , Receptor TIE-2/genética , Recuperación de la Función , Transducción de Señal , Factores de Tiempo , Transfección
9.
J Cell Sci ; 127(Pt 8): 1672-83, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24522185

RESUMEN

Although a number of growth factors and receptors are known to control tumor angiogenesis, relatively little is known about the mechanism by which these factors influence the directional endothelial cell migration required for cancer microvessel formation. Recently, it has been shown that the focal adhesion protein paxillin is required for directional migration of fibroblasts in vitro. Here, we show that paxillin knockdown enhances endothelial cell migration in vitro and stimulates angiogenesis during normal development and in response to tumor angiogenic factors in vivo. Paxillin produces these effects by decreasing expression of neuropilin 2 (NRP2). Moreover, soluble factors secreted by tumors that stimulate vascular ingrowth, including vascular endothelial growth factor (VEGF), also decrease endothelial cell expression of paxillin and NRP2, and overexpression of NRP2 reverses these effects. These results suggest that the VEGF-paxillin-NRP2 pathway could represent a new therapeutic target for cancer and other angiogenesis-related diseases.


Asunto(s)
Movimiento Celular , Células Endoteliales de la Vena Umbilical Humana/fisiología , Neovascularización Patológica/metabolismo , Neuropilina-2/genética , Paxillin/fisiología , Animales , Carcinoma Pulmonar de Lewis/irrigación sanguínea , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Línea Celular Tumoral , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/trasplante , Humanos , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Neuropilina-2/metabolismo , Vasos Retinianos/fisiopatología , Factor A de Crecimiento Endotelial Vascular/fisiología
10.
Proc Natl Acad Sci U S A ; 110(33): 13528-33, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23898174

RESUMEN

Epoxyeicosatrienoic acids (EETs), lipid mediators produced by cytochrome P450 epoxygenases, regulate inflammation, angiogenesis, and vascular tone. Despite pleiotropic effects on cells, the role of these epoxyeicosanoids in normal organ and tissue regeneration remains unknown. EETs are produced predominantly in the endothelium. Normal organ and tissue regeneration require an active paracrine role of the microvascular endothelium, which in turn depends on angiogenic growth factors. Thus, we hypothesize that endothelial cells stimulate organ and tissue regeneration via production of bioactive EETs. To determine whether endothelial-derived EETs affect physiologic tissue growth in vivo, we used genetic and pharmacological tools to manipulate endogenous EET levels. We show that endothelial-derived EETs play a critical role in accelerating tissue growth in vivo, including liver regeneration, kidney compensatory growth, lung compensatory growth, wound healing, corneal neovascularization, and retinal vascularization. Administration of synthetic EETs recapitulated these results, whereas lowering EET levels, either genetically or pharmacologically, delayed tissue regeneration, demonstrating that pharmacological modulation of EETs can affect normal organ and tissue growth. We also show that soluble epoxide hydrolase inhibitors, which elevate endogenous EET levels, promote liver and lung regeneration. Thus, our observations indicate a central role for EETs in organ and tissue regeneration and their contribution to tissue homeostasis.


Asunto(s)
Eicosanoides/farmacología , Células Endoteliales/metabolismo , Compuestos Epoxi/farmacología , Neovascularización Fisiológica/fisiología , Regeneración/fisiología , Animales , Cromatografía Liquida , Eicosanoides/metabolismo , Epóxido Hidrolasas/antagonistas & inhibidores , Compuestos Epoxi/metabolismo , Ojo/irrigación sanguínea , Inmunohistoquímica , Riñón/fisiología , Hígado/fisiología , Pulmón/fisiología , Ratones , Ratones Transgénicos , Neovascularización Fisiológica/efectos de los fármacos , Receptor TIE-2/genética , Regeneración/efectos de los fármacos , Espectrometría de Masas en Tándem
11.
Dev Dyn ; 244(6): 713-23, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25715693

RESUMEN

BACKGROUND: Mechanical compression of cells during mesenchymal condensation triggers cells to undergo odontogenic differentiation during tooth organ formation in the embryo. However, the mechanism by which cell compaction is stabilized over time to ensure correct organ-specific cell fate switching remains unknown. RESULTS: Here, we show that mesenchymal cell compaction induces accumulation of collagen VI in the extracellular matrix (ECM), which physically stabilizes compressed mesenchymal cell shapes and ensures efficient organ-specific cell fate switching during tooth organ development. Mechanical induction of collagen VI deposition is mediated by signaling through the actin-p38MAPK-SP1 pathway, and the ECM scaffold is stabilized by lysyl oxidase in the condensing mesenchyme. Moreover, perturbation of synthesis or cross-linking of collagen VI alters the size of the condensation in vivo. CONCLUSIONS: These findings suggest that the odontogenic differentiation process that is induced by cell compaction during mesenchymal condensation is stabilized and sustained through mechanically regulated production of collagen VI within the mesenchymal ECM.


Asunto(s)
Colágeno Tipo VI/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Mesodermo/citología , Diente Molar/embriología , Odontogénesis/fisiología , Animales , Linaje de la Célula , Forma de la Célula , Colágeno Tipo VI/genética , Proteínas de la Matriz Extracelular/biosíntesis , Proteínas de la Matriz Extracelular/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Análisis por Micromatrices , Diente Molar/metabolismo , Diente Molar/ultraestructura , Especificidad de Órganos , Factor de Transcripción PAX9 , Factores de Transcripción Paired Box/biosíntesis , Factores de Transcripción Paired Box/genética , Plicamicina/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteína-Lisina 6-Oxidasa/biosíntesis , Proteína-Lisina 6-Oxidasa/genética , Factor de Transcripción Sp1/antagonistas & inhibidores , Factor de Transcripción Sp1/fisiología , Transcripción Genética , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
12.
Am J Respir Cell Mol Biol ; 52(1): 56-64, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24960457

RESUMEN

Increased vascular permeability contributes to life-threatening pathological conditions, such as acute respiratory distress syndrome. Current treatments for sepsis-induced pulmonary edema rely on low-tidal volume mechanical ventilation, fluid management, and pharmacological use of a single angiogenic or chemical factor with antipermeability activity. However, it is becoming clear that a combination of multiple angiogenic/chemical factors rather than a single factor is required for maintaining stable and functional blood vessels. We have demonstrated that mouse platelet-rich plasma (PRP) extract contains abundant angiopoietin (Ang) 1 and multiple other factors (e.g., platelet-derived growth factor), which potentially stabilize vascular integrity. Here, we show that PRP extract increases tyrosine phosphorylation levels of Tunica internal endothelial cell kinase (Tie2) and attenuates disruption of cell-cell junctional integrity induced by inflammatory cytokine in cultured human microvascular endothelial cells. Systemic injection of PRP extract also increases Tie2 phosphorylation in mouse lung and prevents endotoxin-induced pulmonary edema and the consequent decreases in lung compliance and exercise intolerance resulting from endotoxin challenge. Soluble Tie2 receptor, which inhibits Ang-Tie2 signaling, suppresses the ability of PRP extract to inhibit pulmonary edema in mouse lung. These results suggest that PRP extract prevents endotoxin-induced pulmonary edema mainly through Ang-Tie2 signaling, and PRP extract could be a potential therapeutic strategy for sepsis-induced pulmonary edema and various lung diseases caused by abnormal vascular permeability.


Asunto(s)
Angiopoyetina 1/metabolismo , Transfusión de Componentes Sanguíneos , Plasma , Edema Pulmonar/prevención & control , Receptor TIE-2/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Permeabilidad Capilar/efectos de los fármacos , Endotoxinas/toxicidad , Humanos , Ratones , Fosforilación , Edema Pulmonar/inducido químicamente , Edema Pulmonar/metabolismo , Edema Pulmonar/patología , Sepsis/complicaciones , Sepsis/metabolismo , Sepsis/patología
13.
Nature ; 457(7233): 1103-8, 2009 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-19242469

RESUMEN

Angiogenesis is controlled by physical interactions between cells and extracellular matrix as well as soluble angiogenic factors, such as VEGF. However, the mechanism by which mechanical signals integrate with other microenvironmental cues to regulate neovascularization remains unknown. Here we show that the Rho inhibitor, p190RhoGAP (also known as GRLF1), controls capillary network formation in vitro in human microvascular endothelial cells and retinal angiogenesis in vivo by modulating the balance of activities between two antagonistic transcription factors, TFII-I (also known as GTF2I) and GATA2, that govern gene expression of the VEGF receptor VEGFR2 (also known as KDR). Moreover, this new angiogenesis signalling pathway is sensitive to extracellular matrix elasticity as well as soluble VEGF. This is, to our knowledge, the first known functional cross-antagonism between transcription factors that controls tissue morphogenesis, and that responds to both mechanical and chemical cues.


Asunto(s)
Neovascularización Fisiológica/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Animales Recién Nacidos , Línea Celular , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/crecimiento & desarrollo , Matriz Extracelular/metabolismo , Factor de Transcripción GATA2/metabolismo , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/deficiencia , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Vasos Retinianos/crecimiento & desarrollo , Vasos Retinianos/metabolismo , Transducción de Señal , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción TFII/metabolismo , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
14.
J Cell Sci ; 125(Pt 13): 3061-73, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22797927

RESUMEN

Transcriptional regulation contributes to the maintenance of pluripotency, self-renewal and differentiation in embryonic cells and in stem cells. Therefore, control of gene expression at the level of transcription is crucial for embryonic development, as well as for organogenesis, functional adaptation, and regeneration in adult tissues and organs. In the past, most work has focused on how transcriptional regulation results from the complex interplay between chemical cues, adhesion signals, transcription factors and their co-regulators during development. However, chemical signaling alone is not sufficient to explain how three-dimensional (3D) tissues and organs are constructed and maintained through the spatiotemporal control of transcriptional activities. Accumulated evidence indicates that mechanical cues, which include physical forces (e.g. tension, compression or shear stress), alterations in extracellular matrix (ECM) mechanics and changes in cell shape, are transmitted to the nucleus directly or indirectly to orchestrate transcriptional activities that are crucial for embryogenesis and organogenesis. In this Commentary, we review how the mechanical control of gene transcription contributes to the maintenance of pluripotency, determination of cell fate, pattern formation and organogenesis, as well as how it is involved in the control of cell and tissue function throughout embryogenesis and adult life. A deeper understanding of these mechanosensitive transcriptional control mechanisms should lead to new approaches to tissue engineering and regenerative medicine.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Mecanotransducción Celular , Transcripción Genética , Animales , Fenómenos Biomecánicos , Tipificación del Cuerpo , Moléculas de Adhesión Celular/química , Forma de la Célula , Desarrollo Embrionario , Células Endoteliales/química , Células Endoteliales/fisiología , Matriz Extracelular/química , Matriz Extracelular/fisiología , Humanos , Organogénesis , Estrés Mecánico , Factores de Transcripción/química
15.
Am J Pathol ; 183(4): 1293-1305, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23928381

RESUMEN

Glioblastoma is a highly vascularized brain tumor, and antiangiogenic therapy improves its progression-free survival. However, current antiangiogenic therapy induces serious adverse effects including neuronal cytotoxicity and tumor invasiveness and resistance to therapy. Although it has been suggested that the physical microenvironment has a key role in tumor angiogenesis and progression, the mechanism by which physical properties of extracellular matrix control tumor angiogenesis and glioblastoma progression is not completely understood. Herein we show that physical compaction (the process in which cells gather and pack together and cause associated changes in cell shape and size) of human glioblastoma cell lines U87MG, U251, and LN229 induces expression of collagen types IV and VI and the collagen crosslinking enzyme lysyl oxidase and up-regulates in vitro expression of the angiogenic factor vascular endothelial growth factor. The lysyl oxidase inhibitor ß-aminopropionitrile disrupts collagen structure in the tumor and inhibits tumor angiogenesis and glioblastoma multiforme growth in a mouse orthotopic brain tumor model. Similarly, d-penicillamine, which inhibits lysyl oxidase enzymatic activity by depleting intracerebral copper, also exhibits antiangiogenic effects on brain tumor growth in mice. These findings suggest that tumor microenvironment controlled by collagen structure is important in tumor angiogenesis and brain tumor progression.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/patología , Colágeno/metabolismo , Progresión de la Enfermedad , Glioblastoma/irrigación sanguínea , Glioblastoma/patología , Neovascularización Patológica/patología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Encéfalo/patología , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/metabolismo , Recuento de Células , Línea Celular Tumoral , Glioblastoma/enzimología , Glioblastoma/metabolismo , Humanos , Ratones , Ratones Desnudos , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Penicilamina/farmacología , Penicilamina/uso terapéutico , Proteína-Lisina 6-Oxidasa/metabolismo , Estrés Mecánico , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
Am J Respir Cell Mol Biol ; 49(6): 1009-18, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23841513

RESUMEN

Physical properties of the tissues and remodeling of extracellular matrix (ECM) play an important role in organ development. Recently, we have reported that low-density lipoprotein receptor-related protein (LRP) 5/Tie2 signaling controls postnatal lung development by modulating angiogenesis. Here we show that tissue stiffness modulated by the ECM cross-linking enzyme, lysyl oxidase (LOX), regulates postnatal lung development through LRP5-Tie2 signaling. The expression of LRP5 and Tie2 is up-regulated twofold in lung microvascular endothelial cells when cultured on stiff matrix compared to those cultured on soft matrix in vitro. LOX inhibitor, ß-aminopropionitrile, disrupts lung ECM (collagen I, III, and VI, and elastin) structures, softens neonatal mouse lung tissue by 20%, and down-regulates the expression of LRP5 and Tie2 by 20 and 60%, respectively, which leads to the inhibition of postnatal lung development (30% increase in mean linear intercept, 1.5-fold increase in air space area). Importantly, hyperoxia treatment (Postnatal Days 1-10) disrupts ECM structure and stiffens mouse lung tissue by up-regulating LOX activity, thereby increasing LRP5 and Tie2 expression and deregulating alveolar morphogenesis in neonatal mice, which is attenuated by inhibiting LOX activity. These findings suggest that appropriate physical properties of lung tissue are necessary for physiological postnatal lung development, and deregulation of this mechanism contributes to postnatal lung developmental disorders, such as bronchopulmonary dysplasia.


Asunto(s)
Matriz Extracelular/metabolismo , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Receptor TIE-2/metabolismo , Animales , Animales Recién Nacidos , Fenómenos Biomecánicos , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patología , Modelos Animales de Enfermedad , Elasticidad , Células Endoteliales/metabolismo , Expresión Génica , Hiperoxia/complicaciones , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/deficiencia , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Pulmón/irrigación sanguínea , Lesión Pulmonar/etiología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína-Lisina 6-Oxidasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor TIE-2/genética , Transducción de Señal
17.
Development ; 137(9): 1407-20, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20388652

RESUMEN

Many genes and molecules that drive tissue patterning during organogenesis and tissue regeneration have been discovered. Yet, we still lack a full understanding of how these chemical cues induce the formation of living tissues with their unique shapes and material properties. Here, we review work based on the convergence of physics, engineering and biology that suggests that mechanical forces generated by living cells are as crucial as genes and chemical signals for the control of embryological development, morphogenesis and tissue patterning.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Morfogénesis/fisiología , Transducción de Señal/fisiología , Animales , Desarrollo Embrionario/fisiología , Humanos , Modelos Biológicos , Organogénesis/fisiología
18.
Microvasc Res ; 89: 15-24, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23660186

RESUMEN

Development and regeneration of tissues and organs require precise coordination among endothelial, epithelial and mesenchymal morphogenesis. Angiogenesis plays key roles in normal development, wound healing, recovery from ischemic disease, and organ regeneration. It has been recognized that the combination of various angiogenic factors in an appropriate physiological ratio is critical for long-term functional blood vessel formation. Here we show that mouse soluble platelet-rich-plasma (PRP) extract, which includes abundant angiopoetin-1 (Ang1) and other angiogenic factors, stimulates endothelial cell growth, migration and differentiation in cultured human dermal microvascular endothelial cells in vitro and neonatal mouse retinal angiogenesis in vivo. Mouse platelet rich fibrin (PRF) matrix, the three-dimensional fibrin matrix that releases angiogenic factors with similar concentrations and proportions to the PRP extract, also recapitulates robust angiogenesis inside the matrix when implanted subcutaneously on the living mouse. Inhibition of Ang1-Tie2 signaling suppresses PRP extract-induced angiogenesis in vitro and angiogenic ability of the PRF matrix in vivo. Since human PRP extract and PRF matrix can be prepared from autologous peripheral blood, our findings may lead to the development of novel therapeutic interventions for various angiogenesis-related diseases as well as to the improvement of strategies for tissue engineering and organ regeneration.


Asunto(s)
Angiopoyetina 1/metabolismo , Neovascularización Fisiológica/fisiología , Plasma Rico en Plaquetas/metabolismo , Receptor TIE-2/metabolismo , Vasos Retinianos/patología , Animales , Proliferación Celular , Células Endoteliales/citología , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Microcirculación , Microscopía Fluorescente , Interferencia de ARN , Regeneración , Retina/crecimiento & desarrollo
19.
Nat Med ; 12(6): 642-9, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16751767

RESUMEN

Preeclampsia is a pregnancy-specific hypertensive syndrome that causes substantial maternal and fetal morbidity and mortality. Maternal endothelial dysfunction mediated by excess placenta-derived soluble VEGF receptor 1 (sVEGFR1 or sFlt1) is emerging as a prominent component in disease pathogenesis. We report a novel placenta-derived soluble TGF-beta coreceptor, endoglin (sEng), which is elevated in the sera of preeclamptic individuals, correlates with disease severity and falls after delivery. sEng inhibits formation of capillary tubes in vitro and induces vascular permeability and hypertension in vivo. Its effects in pregnant rats are amplified by coadministration of sFlt1, leading to severe preeclampsia including the HELLP (hemolysis, elevated liver enzymes, low platelets) syndrome and restriction of fetal growth. sEng impairs binding of TGF-beta1 to its receptors and downstream signaling including effects on activation of eNOS and vasodilation, suggesting that sEng leads to dysregulated TGF-beta signaling in the vasculature. Our results suggest that sEng may act in concert with sFlt1 to induce severe preeclampsia.


Asunto(s)
Antígenos CD/metabolismo , Preeclampsia/metabolismo , Preñez , Receptores de Superficie Celular/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Adulto , Secuencia de Aminoácidos , Animales , Antígenos CD/genética , Endoglina , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Edad Gestacional , Hemodinámica , Humanos , Riñón/metabolismo , Riñón/patología , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Noqueados , Persona de Mediana Edad , Datos de Secuencia Molecular , Óxido Nítrico Sintasa de Tipo III/metabolismo , Placenta/metabolismo , Placenta/patología , Preeclampsia/etiología , Preeclampsia/fisiopatología , Embarazo , Ratas , Ratas Sprague-Dawley , Receptores de Superficie Celular/genética , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta1 , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética
20.
Nano Lett ; 12(6): 3213-7, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22554317

RESUMEN

A cancer nanotherapeutic has been developed that targets the extracellular matrix (ECM)-modifying enzyme lysyl oxidase (LOX) and alters the ECM structure. Poly(d,l-lactide-co-glycolide) nanoparticles (∼220 nm) coated with a LOX inhibitory antibody bind to ECM and suppress mammary cancer cell growth and invasion in vitro as well as tumor expansion in vivo, with greater efficiency than soluble anti-LOX antibody. This nanomaterials approach opens a new path for treating cancer with higher efficacy and decreased side effects.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Nanocápsulas/administración & dosificación , Proteína-Lisina 6-Oxidasa/administración & dosificación , Animales , Línea Celular Tumoral , Ratones
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda