Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Pharmacol Rev ; 76(1): 49-89, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37696583

RESUMEN

Systemic diseases of liver origin (SDLO) are complex diseases in multiple organ systems, such as cardiovascular, musculoskeletal, endocrine, renal, respiratory, and sensory organ systems, caused by irregular liver metabolism and production of functional factors. Examples of such diseases discussed in this article include primary hyperoxaluria, familial hypercholesterolemia, acute hepatic porphyria, hereditary transthyretin amyloidosis, hemophilia, atherosclerotic cardiovascular diseases, α-1 antitrypsin deficiency-associated liver disease, and complement-mediated diseases. Nucleic acid therapeutics use nucleic acids and related compounds as therapeutic agents to alter gene expression for therapeutic purposes. The two most promising, fastest-growing classes of nucleic acid therapeutics are antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs). For each listed SDLO disease, this article discusses epidemiology, symptoms, genetic causes, current treatment options, and advantages and disadvantages of nucleic acid therapeutics by either ASO or siRNA drugs approved or under development. Furthermore, challenges and future perspectives on adverse drug reactions and toxicity of ASO and siRNA drugs for the treatment of SDLO diseases are also discussed. In summary, this review article will highlight the clinical advantages of nucleic acid therapeutics in targeting the liver for the treatment of SDLO diseases. SIGNIFICANCE STATEMENT: Systemic diseases of liver origin (SDLO) contain rare and common complex diseases caused by irregular functions of the liver. Nucleic acid therapeutics have shown promising clinical advantages to treat SDLO. This article aims to provide the most updated information on targeting the liver with antisense oligonucleotides and small interfering RNA drugs. The generated knowledge may stimulate further investigations in this growing field of new therapeutic entities for the treatment of SDLO, which currently have no or limited options for treatment.


Asunto(s)
Hepatopatías , Ácidos Nucleicos , Humanos , Ácidos Nucleicos/uso terapéutico , ARN Interferente Pequeño/uso terapéutico , Oligonucleótidos Antisentido/efectos adversos , Hepatopatías/tratamiento farmacológico
2.
Drug Metab Dispos ; 52(8): 740-753, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38857948

RESUMEN

Acetaminophen (APAP) is the most commonly used over-the-counter medication throughout the world. At therapeutic doses, APAP has potent analgesic and antipyretic effects. The efficacy and safety of APAP are influenced by multifactorial processes dependent upon dosing, namely frequency and total dose. APAP poisoning by repeated ingestion of supratherapeutic doses, depletes glutathione stores in the liver and other organs capable of metabolic bioactivation, leading to hepatocellular death due to exhausted antioxidant defenses. Numerous genes, encompassing transcription factors and signaling pathways, have been identified as playing pivotal roles in APAP toxicity, with the liver being the primary organ studied due to its central role in APAP metabolism and injury. Nuclear factor erythroid 2-related factor 2 (NRF2) and its array of downstream responsive genes are crucial in counteracting APAP toxicity. NRF2, along with its negative regulator Kelch-like ECH-associated protein 1, plays a vital role in regulating intracellular redox homeostasis. This regulation is significant in modulating the oxidative stress, inflammation, and hepatocellular death induced by APAP. In this review, we provide an updated overview of the mechanisms through which NRF2 activation and signaling critically influence the threshold for developing APAP toxicity. We also describe how genetically modified rodent models for NRF2 and related genes have been pivotal in underscoring the significance of this antioxidant response pathway. While NRF2 is a primary focus, the article comprehensively explores other genetic factors involved in phase I and phase II metabolism of APAP, inflammation, oxidative stress, and related pathways that contribute to APAP toxicity, thereby providing a holistic understanding of the genetic landscape influencing susceptibility to this condition. SIGNIFICANCE STATEMENT: This review summarizes the genetic elements and signaling pathways underlying APAP-induced liver toxicity, focusing on the crucial protective role of the transcription factor NRF2. This review also delves into the genetic intricacies influencing APAP safety and potential liver harm. It also emphasizes the need for deeper insight into the molecular mechanisms of hepatotoxicity, especially the interplay of NRF2 with other pathways.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Factor 2 Relacionado con NF-E2 , Acetaminofén/toxicidad , Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Humanos , Animales , Analgésicos no Narcóticos/toxicidad , Analgésicos no Narcóticos/efectos adversos , Hígado/efectos de los fármacos , Hígado/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Predisposición Genética a la Enfermedad , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética
3.
Drug Metab Dispos ; 50(10): 1376-1388, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35914951

RESUMEN

Severity of drug-induced liver injury (DILI) ranges from mild, asymptomatic, and transient elevations in liver function tests to irreversible liver damage, often needing transplantation. Traditionally, DILI is classified mechanistically as high-frequency intrinsic DILI, commonly dose dependent or DILI that rarely occurs and is idiosyncratic in nature. This latter form is not dose dependent and has a pattern of histopathological manifestation that is not always uniform. Currently, a third type of DILI called indirect hepatotoxicity has been described that is associated with the pharmacological action of the drug. Historically, DILI was primarily linked to drug metabolism events; however, the impact of transporter-mediated rates of drug uptake and excretion has gained greater prominence in DILI research. This review provides a comprehensive view of the major findings from studies examining the contribution of hepatic ATP-binding cassette transporters as key contributors to DILI and how changes in their expression and function influence the development, severity, and overall toxicity outcome. SIGNIFICANCE STATEMENT: Drug-induced liver injury (DILI) continues to be a focal point in drug development research. ATP-binding cassette (ABC) transporters have emerged as important determinants of drug detoxification, disposition, and safety. This review article provides a comprehensive analysis of the literature addressing: (a) the role of hepatic ABC transporters in DILI, (b) the influence of genetic mutations in ABC transporters on DILI, and (c) new areas of research emphasis, such as the influence of the gut microbiota and epigenetic regulation, on ABC transporters.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato , Epigénesis Genética , Humanos
4.
Drug Metab Dispos ; 50(5): 694-703, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34348940

RESUMEN

Acetaminophen (APAP)-induced liver injury (AILI) is the leading cause of acute liver failure in the United States, but its impact on metabolism, therapeutic efficacy, and adverse drug reactions (ADRs) of co- and/or subsequent administered drugs are not fully investigated. The current work explored this field with a focus on the AILI-mediated alterations of cytochrome P450-mediated drug metabolism. Various levels of liver injury were induced in mice by treatment with APAP at 0, 200, 400, and 600 mg/kg. Severity of liver damage was determined at 24, 48, 72, and 96 hours by plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), microRNA miR122, and tissue staining. The expression and activities of CYP3A11, 1A2, 2B10, 2C29, and 2E1 were measured. Sedation efficacy and ADRs of midazolam, a CYP3A substrate, were monitored after APAP treatment. ALT, AST, and miR122 increased at 24 hours after APAP treatment with all APAP doses, whereas only groups treated with 200 and 400 mg/kg recovered back to normal levels at 72 and 96 hours. The expression and activity of the cytochromes P450 significantly decreased at 24 hours with all APAP doses but only recovered back to normal at 72 and 96 hours with 200 and 400, but not 600, mg/kg of APAP. The alterations of cytochrome P450 activities resulted in altered sedation efficacy and ADRs of midazolam, which were corrected by dose justification of midazolam. Overall, this work illustrated a low cytochrome P450 expression window after AILI, which can decrease drug metabolism and negatively impact drug efficacy and ADRs. SIGNIFICANCE STATEMENT: The data generated in the mouse model demonstrated that expression and activities of cytochrome P450 enzymes and correlated drug efficacy and ADRs are altered during the time course of liver repair and regeneration after liver is injured by treatment with APAP. Dose justifications based on predicted changes of cytochrome P450 activities can achieve desired therapeutic efficacy and avoid ADRs. The generated data provide fundamental knowledge for translational research to drug treatment for patients during liver recovery and regeneration who have experienced AILI.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Acetaminofén/efectos adversos , Acetaminofén/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Hígado/metabolismo , Ratones , Midazolam/metabolismo
5.
Drug Metab Dispos ; 50(6): 888-897, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35221287

RESUMEN

Absorption, distribution, metabolism, and excretion (ADME) are the key biologic processes for determination of a drug's pharmacokinetic parameters, which have direct impacts on efficacy and adverse drug reactions (ADRs). The chemical structures, dosage forms, and sites and routes of administration are the principal determinants of ADME profiles and consequent impacts on their efficacy and ADRs. Newly developed large molecule biologic antisense oligonucleotide (ASO) drugs have completely unique ADME that is not fully defined. ASO-based drugs are single-stranded synthetic antisense nucleic acids with diverse modes of drug actions from induction of mRNA degradation, exon skipping and restoration, and interactions with proteins. ASO drugs have a great potential to treat certain human diseases that have remained untreatable with small molecule-based drugs. The ADME of ASO drugs contributes to their unique set of ADRs and toxicity. In this review, to better understand their ADME, the 10 US Food and Drug Administration (FDA)-approved ASO drugs were selected: fomivirsen, pegaptanib, mipomersen, nusinersen, inotersen, defibrotide, eteplirsen, golodirsen, viltolarsen, and casimersen. A meta-analysis was conducted on their formulation, dosage, sites of administration, local and systematic distribution, metabolism, degradation, and excretion. Membrane permeabilization through endocytosis and nucleolytic degradation by endonucleases and exonucleases are major ADME features of the ASO drugs that differ from small-molecule drugs. The information summarized here provides comprehensive ADME characteristics of FDA-approved ASO drugs, leading to a better understanding of their therapeutic efficacy and their potential ADRs and toxicity. Numerous knowledge gaps, particularly on cellular uptake and subcellular trafficking and distribution, are identified, and future perspectives and directions are discussed. SIGNIFICANCE STATEMENT: Through a systematic analysis of the existing information of absorption, distribution, metabolism, and excretion (ADME) parameters for 10 US Food and Drug Administration (FDA)-approved antisense oligonucleotide (ASO) drugs, this review provides an overall view of the unique ADME characteristics of ASO drugs, which are distinct from small chemical drug ADME. This knowledge is useful for discovery and development of new ASO drugs as well as clinical use of current FDA-approved ASO drugs.


Asunto(s)
Productos Biológicos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Exones , Humanos , Oligonucleótidos , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Estados Unidos , United States Food and Drug Administration
6.
Drug Metab Dispos ; 50(6): 879-887, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35221289

RESUMEN

The market for large molecule biologic drugs has grown rapidly, including antisense oligonucleotide (ASO) drugs. ASO drugs work as single-stranded synthetic oligonucleotides that reduce production or alter functions of disease-causing proteins through various mechanisms, such as mRNA degradation, exon skipping, and ASO-protein interactions. Since the first ASO drug, fomivirsen, was approved in 1998, the U.S. Food and Drug Administration (FDA) has approved 10 ASO drugs to date. Although ASO drugs are efficacious in treating some diseases that are untargetable by small-molecule chemical drugs, concerns on adverse drug reactions (ADRs) and toxicity cannot be ignored. Illustrative of this, mipomersen was recently taken off the market due to its hepatotoxicity risk. This paper reviews ADRs and toxicity from FDA drug labeling, preclinical studies, clinical trials, and postmarketing real-world studies on the 10 FDA-approved ASO drugs, including fomivirsen and pegaptanib, mipomersen, nusinersen, inotersen, defibrotide, eteplirsen, golodirsen, viltolarsen, and casimersen. Unique and common ADRs and toxicity for each ASO drug are summarized here. The risk of developing hepatotoxicity, kidney toxicity, and hypersensitivity reactions co-exists for multiple ASO drugs. Special precautions need to be in place when certain ASO drugs are administrated. Further discussion is extended on studying the mechanisms of ADRs and toxicity of these drugs, evaluating the existing physiologic and pathologic states of patients, optimizing the dose and route of administration, and formulating personalized treatment plans to improve the clinical utility of FDA-approved ASO drugs and discovery and development of new ASO drugs with reduced ADRs. SIGNIFICANCE STATEMENT: The current review provides a comprehensive analysis of unique and common ADRs and the toxicity of FDA-approved ASO drugs. The information can help better manage the risk of severe hepatotoxicity, kidney toxicity, and hypersensitivity reactions in the usage of currently approved ASO drugs and the discovery and development of new and safer ASO drugs.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Humanos , Oligonucleótidos/efectos adversos , Oligonucleótidos Antisentido/efectos adversos , Oligonucleótidos Antisentido/genética , Estados Unidos , United States Food and Drug Administration
7.
FASEB J ; 35(2): e21304, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33417247

RESUMEN

Multidrug resistance protein 4 (Mrp4) is an efflux transporter known to transport several xenobiotics and endogenous molecules. We recently identified that the lack of Mrp4 increases adipose tissue and body weights in mice. However, the role of Mrp4 in adipose tissue physiology are unknown. The current study aimed at characterizing these specific roles of Mrp4 using wild-type (WT) and knockout (Mrp4-/- ) mice. Our studies determined that Mrp4 is expressed in mouse adipose tissue and that the lack of Mrp4 expression is associated with adipocyte hypertrophy. Furthermore, the lack of Mrp4 increased blood glucose and leptin levels, and impaired glucose tolerance. Additionally, in 3T3-L1 cells and human pre-adipocytes, pharmacological inhibition of Mrp4 increased adipogenesis and altered expression of adipogenic genes. Lack of Mrp4 activity in both of our in vivo and in vitro models leads to increased activation of adipose tissue cAMP response element-binding protein (Creb) and decreased plasma prostaglandin E (PGE) metabolite levels. These changes in Creb activation, coupled with decreased PGE levels, together promoted the observed metabolic phenotype in Mrp4-/- mice. In conclusion, our results indicate that Mrp4 as a novel genetic factor involved in the pathogenesis of metabolic diseases, such as obesity and diabetes.


Asunto(s)
Diabetes Mellitus/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Obesidad/metabolismo , Adipocitos/metabolismo , Adipogénesis/genética , Adipogénesis/fisiología , Animales , Western Blotting , Calorimetría , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Diabetes Mellitus/genética , Humanos , Ratones , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Obesidad/genética , RNA-Seq
8.
Mol Pharmacol ; 97(4): 278-286, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32029527

RESUMEN

Acetaminophen (APAP) is a commonly used over-the-counter drug for its analgesic and antipyretic effects. However, APAP overdose leads to severe APAP-induced liver injury (AILI) and even death as a result of the accumulation of N-acetyl-p-benzoquinone imine, the toxic metabolite of APAP generated by cytochrome P450s (P450s). Long noncoding RNAs HNF1α antisense RNA 1 (HNF1α-AS1) and HNF4α antisense RNA 1 (HNF4α-AS1) are regulatory RNAs involved in the regulation of P450 expression in both mRNA and protein levels. This study aims to determine the impact of HNF1α-AS1 and HNF4α-AS1 on AILI. Small hairpin RNAs were used to knock down HNF1α-AS1 and HNF4α-AS1 in HepaRG cells. Knockdown of these lncRNAs altered APAP-induced cytotoxicity, indicated by MTT and LDH assays. Specifically, HNF1α-AS1 knockdown decreased APAP toxicity with increased cell viability and decreased LDH release, whereas HNF4α-AS1 knockdown exacerbated APAP toxicity, with opposite effects in the MTT and LDH assays. Alterations on gene expression by knockdown of HNF1α-AS1 and HNF4α-AS1 were examined in several APAP metabolic pathways, including CYP1A2, CYP2E1, CYP3A4, UGT1A1, UGT1A9, SULT1A1, GSTP1, and GSTT1. Knockdown of HNF1α-AS1 decreased mRNA expression of CYP1A2, 2E1, and 3A4 by 0.71-fold, 0.35-fold, and 0.31-fold, respectively, whereas knockdown of HNF4α-AS1 induced mRNAs of CYP1A2, 2E1, and 3A4 by 1.3-fold, 1.95-fold, and 1.9-fold, respectively. These changes were also observed in protein levels. Knockdown of HNF1α-AS1 and HNF4α-AS1 had limited effects on the mRNA expression of UGT1A1, UGT1A9, SULT1A1, GSTP1, and GSTT1. Altogether, our study suggests that HNF1α-AS1 and HNF4α-AS1 affected AILI mainly through alterations of P450-mediated APAP biotransformation in HepaRG cells, indicating an important role of the lncRNAs in AILI. SIGNIFICANCE STATEMENT: The current research identified two lncRNAs, hepatocyte nuclear factor 1α antisense RNA 1 and hepatocyte nuclear factor 4α antisense RNA 1, which were able to affect susceptibility of acetaminophen (APAP)-induced liver injury in HepaRG cells, possibly through regulating the expression of APAP-metabolizing cytochrome P450 enzymes. This discovery added new factors, lncRNAs, which can be used to predict cytochrome P450-mediated drug metabolism and drug-induced toxicity.


Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Sistema Enzimático del Citocromo P-450/genética , Hepatocitos/efectos de los fármacos , ARN Largo no Codificante/metabolismo , Acetaminofén/metabolismo , Línea Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Predisposición Genética a la Enfermedad , Hepatocitos/patología , Humanos , Hígado/citología , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/patología , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo
9.
Drug Metab Dispos ; 48(5): 326-336, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32094214

RESUMEN

Drug-induced liver injury (DILI) is a global medical problem. The risk of DILI is often related to expression and activities of drug-metabolizing enzymes, especially cytochrome P450s (P450s). However, changes on expression and activities of P450s after DILI have not been determined. The aim of this study is to fill this knowledge gap. Acetaminophen (APAP) was used as a model drug to induce DILI in C57BL/6J mice at different ages of days 10 (infant), 22 (child), and 60 (adult). DILI was assessed by levels of alanine aminotransferase and aspartate aminotransferase in plasma with a confirmation by H&E staining on liver tissue sections. The expression of selected P450s at mRNA and protein levels was measured by real-time polymerase chain reaction and liquid chromatography-tandem mass spectrometry, respectively. The activities of these P450s were determined by the formation of metabolites from probe drugs for each P450 using ultraperformance liquid chromatography-quadrupole time of flight mass spectrometry. DILI was induced at mild to severe levels in a dose-dependent manner in 200, 300, and 400 mg/kg APAP-treated groups at child and adult ages, but not at the infant age. Significantly decreased expression at mRNA and protein levels as well as enzymatic activities of CYP2E1, 3A11, 1A2, and 2C29 were found at child and adult ages. Adult male mice were more susceptible to APAP-induced liver injury than female mice with more decreased expression of P450s. These results suggest that altered levels of P450s in livers severely injured by drugs may affect the therapeutic efficacy of drugs, which are metabolized by P450s, more particularly for males. SIGNIFICANCE STATEMENT: The current study in an animal model demonstrates that acetaminophen-induced liver injury results in decreased expression and enzyme activities of several examined drug-metabolizing cytochrome P450s (P450s). The extent of such decreases is correlated to the degree of liver injury severity. The generated data may be translated to human health for patients who have drug-induced liver injury with decreased capability to metabolize drugs by certain P450s.


Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Sistema Enzimático del Citocromo P-450/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Adulto , Factores de Edad , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Niño , Sistema Enzimático del Citocromo P-450/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Lactante , Hígado/enzimología , Hígado/patología , Masculino , Ratones , Midazolam/administración & dosificación , Midazolam/farmacocinética , Oxazinas/administración & dosificación , Oxazinas/farmacocinética , Factores Sexuales
10.
Drug Metab Dispos ; 47(10): 1080-1092, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31399506

RESUMEN

In the present work, in vivo transporter knockout (KO) mouse models were used to characterize the disposition of diclofenac (DCF) and its primary metabolites following a single subtoxic dose in mice lacking breast cancer resistance protein (Bcrp) or multidrug resistance-associated protein (Mrp)3. The results indicate that Bcrp acts as a canalicular efflux mediator for DCF, as wild-type (WT) mice had biliary excretion values that were 2.2- to 2.6-fold greater than Bcrp KO mice, although DCF plasma levels were not affected. The loss of Bcrp resulted in a 1.8- to 3.2-fold increase of diclofenac acyl glucuronide (DCF-AG) plasma concentrations in KO animals compared with WT mice, while the biliary excretion of DCF-AG increased 1.4-fold in WT versus KO mice. Furthermore, Mrp3 was found to mediate the basolateral transport of DCF-AG, but not DCF or 4'-hydroxy diclofenac. WT mice had DCF-AG plasma concentrations 7.0- to 8.6-fold higher than Mrp3 KO animals; however, there were no changes in biliary excretion of DCF-AG. Vesicular transport experiments with human MRP3 demonstrated that MRP3 is able to transport DCF-AG via low- and high-affinity binding sites. The low-affinity MRP3 transport had a V max and K m of 170 pmol/min/mg and 98.2 µM, respectively, while the high-affinity V max and K m parameters were estimated to be 71.9 pmol/min/mg and 1.78 µM, respectively. In summary, we offer evidence that the disposition of DCF-AG can be affected by both Bcrp and Mrp3, and these findings may be applicable to humans.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Diclofenaco/análogos & derivados , Glucurónidos/farmacocinética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Animales , Diclofenaco/farmacocinética , Diclofenaco/toxicidad , Glucurónidos/toxicidad , Masculino , Ratones , Ratones Noqueados , Distribución Tisular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda