Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biol Chem ; 295(11): 3506-3517, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32019868

RESUMEN

Pseudomonas aeruginosa uses a type III secretion system (T3SS) to inject cytotoxic effector proteins into host cells. The promiscuous nucleotidyl cyclase, exoenzyme Y (ExoY), is one of the most common effectors found in clinical P. aeruginosa isolates. Recent studies have revealed that the nucleotidyl cyclase activity of ExoY is stimulated by actin filaments (F-actin) and that ExoY alters actin cytoskeleton dynamics in vitro, via an unknown mechanism. The actin cytoskeleton plays an important role in numerous key biological processes and is targeted by many pathogens to gain competitive advantages. We utilized total internal reflection fluorescence microscopy, bulk actin assays, and EM to investigate how ExoY impacts actin dynamics. We found that ExoY can directly bundle actin filaments with high affinity, comparable with eukaryotic F-actin-bundling proteins, such as fimbrin. Of note, ExoY enzymatic activity was not required for F-actin bundling. Bundling is known to require multiple actin-binding sites, yet small-angle X-ray scattering experiments revealed that ExoY is a monomer in solution, and previous data suggested that ExoY possesses only one actin-binding site. We therefore hypothesized that ExoY oligomerizes in response to F-actin binding and have used the ExoY structure to construct a dimer-based structural model for the ExoY-F-actin complex. Subsequent mutational analyses suggested that the ExoY oligomerization interface plays a crucial role in mediating F-actin bundling. Our results indicate that ExoY represents a new class of actin-binding proteins that modulate the actin cytoskeleton both directly, via F-actin bundling, and indirectly, via actin-activated nucleotidyl cyclase activity.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Bacterianas/metabolismo , Glucosiltransferasas/metabolismo , Pseudomonas aeruginosa/enzimología , Citoesqueleto de Actina/ultraestructura , Factores Despolimerizantes de la Actina/metabolismo , Actinas/química , Actinas/metabolismo , Actinas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Glucosiltransferasas/química , Glucosiltransferasas/genética , Glucosiltransferasas/ultraestructura , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Modelos Moleculares , Mutación/genética , Unión Proteica , Multimerización de Proteína
2.
Biochem J ; 475(24): 3949-3962, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30442721

RESUMEN

The α-proteobacterium Sinorhizobium meliloti can live freely in the soil or engage in a symbiosis with its legume host. S. meliloti facilitates nitrogen fixation in root nodules, thus providing pivotal, utilizable nitrogen to the host. The organism has eight chemoreceptors, namely McpT to McpZ and IcpA that facilitate chemotaxis. McpX is the first known bacterial sensor of quaternary ammonium compounds (QACs) such as choline and betaines. Because QACs are exuded at chemotaxis-relevant concentrations by germinating alfalfa seeds, McpX has been proposed to contribute to host-specific chemotaxis. We have determined the crystal structure of the McpX periplasmic region (McpXPR) in complex with the proline betaine at 2.7 Å resolution. In the crystal, the protein forms a symmetric dimer with one proline betaine molecule bound to each monomer of McpXPR within membrane-distal CACHE module. The ligand is bound through cation-πinteractions with four aromatic amino acid residues. Mutational analysis in conjunction with binding studies revealed that a conserved aspartate residue is pivotal for ligand binding. We discovered that, in a striking example of convergent evolution, the ligand-binding site of McpXPR resembles that of a group of structurally unrelated betaine-binding proteins including ProX and OpuAC. Through this comparison and docking studies, we rationalized the specificity of McpXPR for this specific group of ligands. Collectively, our structural, biochemical, and molecular docking data have revealed the molecular determinants in McpX that are crucial for its rare ligand specificity for QACs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quimiotaxis/fisiología , Simulación del Acoplamiento Molecular/métodos , Compuestos de Amonio Cuaternario/metabolismo , Sinorhizobium meliloti , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalización , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Compuestos de Amonio Cuaternario/química , Sinorhizobium meliloti/genética , Difracción de Rayos X
3.
Nat Commun ; 13(1): 1833, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383169

RESUMEN

Presequence protease (PreP), a 117 kDa mitochondrial M16C metalloprotease vital for mitochondrial proteostasis, degrades presequence peptides cleaved off from nuclear-encoded proteins and other aggregation-prone peptides, such as amyloid ß (Aß). PreP structures have only been determined in a closed conformation; thus, the mechanisms of substrate binding and selectivity remain elusive. Here, we leverage advanced vitrification techniques to overcome the preferential denaturation of one of two ~55 kDa homologous domains of PreP caused by air-water interface adsorption. Thereby, we elucidate cryoEM structures of three apo-PreP open states along with Aß- and citrate synthase presequence-bound PreP at 3.3-4.6 Å resolution. Together with integrative biophysical and pharmacological approaches, these structures reveal the key stages of the PreP catalytic cycle and how the binding of substrates or PreP inhibitor drives a rigid body motion of the protein for substrate binding and catalysis. Together, our studies provide key mechanistic insights into M16C metalloproteases for future therapeutic innovations.


Asunto(s)
Péptidos beta-Amiloides , Mitocondrias , Péptidos beta-Amiloides/metabolismo , Microscopía por Crioelectrón , Humanos , Metaloproteasas/metabolismo , Mitocondrias/metabolismo , Conformación Molecular , Conformación Proteica , Especificidad por Sustrato
4.
Structure ; 29(7): 709-720.e3, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33378640

RESUMEN

Zinc metalloprotease 1 (Zmp1), a Mycobacterium tuberculosis 75 kDa secreted enzyme, mediates key stages of tuberculosis disease progression. The biological activity of Zmp1 presumably stems from its ability to degrade bacterium- and/or host-derived peptides. The crystal structures of Zmp1 and related M13 metalloproteases, such as neprilysin and endothelin-converting enzyme-1 were determined only in the closed conformation, which cannot capture substrates or release proteolytic products. Thus, the mechanisms of substrate binding and selectivity remain elusive. Here we report two open-state cryo-EM structures of Zmp1, revealed by our SAXS analysis to be the dominant states in solution. Our structural analyses reveal how ligand binding induces a conformational switch in four linker regions to drive the rigid body motion of the D1 and D2 domains, which form the sizable catalytic chamber. Furthermore, they offer insights into the catalytic cycle and mechanism of substrate recognition of M13 metalloproteases for future therapeutic innovations.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Metaloproteasas/química , Metaloproteasas/metabolismo , Mycobacterium tuberculosis/enzimología , Microscopía por Crioelectrón , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
5.
Structure ; 27(5): 785-793.e5, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30879888

RESUMEN

Recent paradigm shifting discoveries have demonstrated that bacterial signaling kinases engage in unexpected regulatory crosstalk, yet the underlying molecular mechanisms remain largely uncharacterized. The Pseudomonas aeruginosa RetS/GacS system constitutes an ideal model for studying these mechanisms. The in-depth analysis of the kinase region of RetS and RetS/GacS interactions presented here refutes a longstanding model, which posited the formation of a catalytically inactive RetS/GacS heterodimer. Crystallographic studies uncovered structurally dynamic features within the RetS kinase region, suggesting that RetS uses the reversible unfolding of a helix, or helix cracking, to control interactions with GacS. The pivotal importance of this helical region for regulating GacS and, by extension, Pseudomonas aeruginosa virulence, was corroborated via in vivo assays. The implications of this work extend beyond the RetS/GacS system because the helix cracking occurs right next to a highly conserved catalytic residue histidine-424, suggesting this model could represent an emergent archetype for histidine kinase regulation.


Asunto(s)
Proteínas Bacterianas/química , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/metabolismo , Factores de Transcripción/química , Adenosina Trifosfato/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Transferencia Resonante de Energía de Fluorescencia , Histidina/química , Histidina Quinasa/química , Histidina Quinasa/metabolismo , Ligandos , Multimerización de Proteína , Transducción de Señal , Factores de Transcripción/metabolismo , Virulencia
6.
Structure ; 24(11): 1886-1897, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27667690

RESUMEN

Type IV pili (T4P) mediate bacterial motility and virulence. The PilB/GspE family ATPases power the assembly of T4P and type 2 secretion systems. We determined the structure of the ATPase region of PilB (PilBATP) in complex with ATPγS to provide a model of a T4P assembly ATPase and a view of a PilB/GspE family hexamer at better than 3-Šresolution. Spatial positioning and conformations of the protomers suggest a mechanism of force generation. All six PilBATP protomers contain bound ATPγS. Two protomers form a closed conformation poised for ATP hydrolysis. The other four molecules assume an open conformation but separate into two pairs with distinct active-site accessibilities. We propose that one pair represents the post-hydrolysis phase while the other pair appears poised for ADP/ATP exchange. Collectively, the data suggest that T4P assembly is powered by coordinating concurrent substrate binding with ATP hydrolysis across the PilB hexamer.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fimbrias Bacterianas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Thermus thermophilus/enzimología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Fimbrias Bacterianas/química , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Especificidad por Sustrato , Thermus thermophilus/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda