Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Pharmacol ; 91(2): 87-99, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27864425

RESUMEN

The human histamine H3 receptor (hH3R) is subject to extensive gene splicing that gives rise to a large number of functional and nonfunctional isoforms. Despite the general acceptance that G protein-coupled receptors can adopt different ligand-induced conformations that give rise to biased signaling, this has not been studied for the H3R; further, it is unknown whether splice variants of the same receptor engender the same or differential biased signaling. Herein, we profiled the pharmacology of histamine receptor agonists at the two most abundant hH3R splice variants (hH3R445 and hH3R365) across seven signaling endpoints. Both isoforms engender biased signaling, notably for 4-[3-(benzyloxy)propyl]-1H-imidazole (proxyfan) [e.g., strong bias toward phosphorylation of glycogen synthase kinase 3ß (GSK3ß) via the full-length receptor] and its congener 3-(1H-imidazol-4-yl)propyl-(4-iodophenyl)-methyl ether (iodoproxyfan), which are strongly consistent with the former's designation as a "protean" agonist. The 80 amino acid IL3 deleted isoform hH3R365 is more permissive in its signaling than hH3R445: 2-(1H-imidazol-5-yl)ethyl imidothiocarbamate (imetit), proxyfan, and iodoproxyfan were all markedly biased away from calcium signaling, and principal component analysis of the full data set revealed divergent profiles for all five agonists. However, most interesting was the identification of differential biased signaling between the two isoforms. Strikingly, hH3R365 was completely unable to stimulate GSK3ß phosphorylation, an endpoint robustly activated by the full-length receptor. To the best of our knowledge, this is the first quantitative example of differential biased signaling via isoforms of the same G protein-coupled receptor that are simultaneously expressed in vivo and gives rise to the possibility of selective pharmacological targeting of individual receptor splice variants.


Asunto(s)
Agonistas de los Receptores Histamínicos/farmacología , Receptores Histamínicos H3/metabolismo , Animales , Bioensayo , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Agonistas de los Receptores Histamínicos/química , Humanos , Análisis de Componente Principal , Isoformas de Proteínas/metabolismo , Eliminación de Secuencia
2.
Bioorg Med Chem ; 25(1): 38-52, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28029458

RESUMEN

All clinically-used antipsychotics display similar affinity for both D2 (D2R) and D3 (D3R) receptors, and they likewise act as 5-HT2A receptor antagonists. They provide therapeutic benefit for positive symptoms, but no marked or consistent improvement in neurocognitive, social cognitive or negative symptoms. Since blockade of D3 and 5-HT6 (5-HT6R) receptors enhances neurocognition and social cognition, and potentially improves negative symptoms, a promising approach for improved treatment for schizophrenia would be to develop drugs that preferentially act at D3R versus D2R and likewise recognize 5-HT6R. Starting from the high affinity 5-HT6R ligands I and II, we identified compounds 11a and 14b that behave as 5-HT6R ligands with significant selectivity for D3R over D2R.


Asunto(s)
Antipsicóticos/química , Antipsicóticos/farmacología , Diseño de Fármacos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Receptores de Serotonina/metabolismo , Antagonistas de Dopamina/química , Antagonistas de Dopamina/farmacología , Humanos , Indoles/química , Indoles/farmacología , Simulación del Acoplamiento Molecular , Compuestos Policíclicos/química , Compuestos Policíclicos/farmacología , Esquizofrenia/tratamiento farmacológico , Antagonistas de la Serotonina/química , Antagonistas de la Serotonina/farmacología
3.
J Biol Chem ; 290(18): 11537-46, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25770211

RESUMEN

Inasmuch as the neurohormone melatonin is synthetically derived from serotonin (5-HT), a close interrelationship between both has long been suspected. The present study reveals a hitherto unrecognized cross-talk mediated via physical association of melatonin MT2 and 5-HT2C receptors into functional heteromers. This is of particular interest in light of the "synergistic" melatonin agonist/5-HT2C antagonist profile of the novel antidepressant agomelatine. A suite of co-immunoprecipitation, bioluminescence resonance energy transfer, and pharmacological techniques was exploited to demonstrate formation of functional MT2 and 5-HT2C receptor heteromers both in transfected cells and in human cortex and hippocampus. MT2/5-HT2C heteromers amplified the 5-HT-mediated Gq/phospholipase C response and triggered melatonin-induced unidirectional transactivation of the 5-HT2C protomer of MT2/5-HT2C heteromers. Pharmacological studies revealed distinct functional properties for agomelatine, which shows "biased signaling." These observations demonstrate the existence of functionally unique MT2/5-HT2C heteromers and suggest that the antidepressant agomelatine has a distinctive profile at these sites potentially involved in its therapeutic effects on major depression and generalized anxiety disorder. Finally, MT2/5-HT2C heteromers provide a new strategy for the discovery of novel agents for the treatment of psychiatric disorders.


Asunto(s)
Melatonina/metabolismo , Multimerización de Proteína , Receptor de Melatonina MT2/química , Receptor de Serotonina 5-HT2C/química , Serotonina/metabolismo , Transducción de Señal , Acetamidas/farmacología , Arrestinas/metabolismo , Sinergismo Farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Melatonina/farmacología , Multimerización de Proteína/efectos de los fármacos , Estructura Cuaternaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/metabolismo , Receptor de Serotonina 5-HT2C/genética , Receptor de Serotonina 5-HT2C/metabolismo , Serotonina/farmacología , Transducción de Señal/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , Fosfolipasas de Tipo C/metabolismo , beta-Arrestinas
4.
J Neurochem ; 136(5): 1037-51, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26685100

RESUMEN

Dystrobrevin binding protein-1 (dysbindin-1), a candidate gene for schizophrenia, modulates cognition, synaptic plasticity and frontocortical circuitry and interacts with glutamatergic and dopaminergic transmission. Loss of dysbindin-1 modifies cellular trafficking of dopamine (DA) D2 receptors to increase cell surface expression, but its influence upon signaling has never been characterized. Further, the effects of dysbindin-1 upon closely related D3 receptors remain unexplored. Hence, we examined the impact of dysbindin-1 (isoform A) co-expression on the localization and coupling of human D2L and D3 receptors stably expressed in Chinese hamster ovary or SH-SY5Y cells lacking endogenous dysbindin-1. Dysbindin-1 co-transfection decreased cell surface expression of both D3 and D2L receptors. Further, while their affinity for DA was unchanged, dysbindin-1 reduced the magnitude and potency of DA-induced adenylate cylase recruitment/cAMP production. Dysbindin-1 also blunted the amplitude of DA-induced phosphorylation of ERK1/2 and Akt at both D2L and D3 receptors without, in contrast to cAMP, affecting the potency of DA. Interference with calveolin/clathrin-mediated processes of internalization prevented the modification by dysbindin-1 of ERK1/2 and adenylyl cyclase stimulation at D2L and D3 receptors. Finally, underpinning the specificity of the influence of dysbindin-1 on D2L and D3 receptors, dysbindin-1 did not modify recruitment of adenylyl cyclase by D1 receptors. These observations demonstrate that dysbindin-1 influences cell surface expression of D3 in addition to D2L receptors, and that it modulates activation of their signaling pathways. Accordingly, both a deficiency and an excess of dysbindin-1 may be disruptive for dopaminergic transmission, supporting its link to schizophrenia and other CNS disorders. Dysbindin-1, a candidate gene for schizophrenia, alters D2 receptors cell surface expression. We demonstrate that dysbindin-1 expression also influences cell surface levels of D3 receptors. Further, Dysbindin-1 reduces DA-induced adenylate cylase recruitment/cAMP production and modifies major signaling pathways (Akt and extracellular signal-regulated kinases1/2 (ERK1/2)) of both D2 and D3 receptors. Dysbindin-1 modulates thus D2 and D3 receptor signaling, supporting a link to schizophrenia.


Asunto(s)
Adenilil Ciclasas/metabolismo , Proteínas Asociadas a la Distrofina/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Animales , Células CHO , Proteínas Portadoras/metabolismo , Cricetulus , Dopamina/metabolismo , Disbindina , Humanos , Ratones , Esquizofrenia/metabolismo , Transducción de Señal/fisiología
5.
Nat Chem Biol ; 10(7): 590-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24880860

RESUMEN

The serotonin6 receptor (5-HT6R) is a promising target for treating cognitive deficits of schizophrenia often linked to alterations of neuronal development. This receptor controls neurodevelopmental processes, but the signaling mechanisms involved remain poorly understood. Using a proteomic strategy, we show that 5-HT6Rs constitutively interact with cyclin-dependent kinase 5 (Cdk5). Expression of 5-HT6Rs in NG108-15 cells induced neurite growth and expression of voltage-gated Ca(2+) channels, two hallmarks of neuronal differentiation. 5-HT6R-elicited neurite growth was agonist independent and prevented by the 5-HT6R antagonist SB258585, which behaved as an inverse agonist. Moreover, it required receptor phosphorylation at Ser350 by Cdk5 and Cdc42 activity. Supporting a role of native 5-HT6Rs in neuronal differentiation, neurite growth of primary neurons was reduced by SB258585, by silencing 5-HT6R expression or by mutating Ser350 into alanine. These results reveal a functional interplay between Cdk5 and a G protein-coupled receptor to control neuronal differentiation.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/genética , Hipocampo/metabolismo , Neuritas/ultraestructura , Receptores de Serotonina/genética , Animales , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Diferenciación Celular/genética , Línea Celular Tumoral , Quinasa 5 Dependiente de la Ciclina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Humanos , Ligandos , Ratones , Mutación , Neuritas/metabolismo , Fosforilación , Piperazinas/farmacología , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Receptores de Serotonina/metabolismo , Transducción de Señal , Sulfonamidas/farmacología , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
6.
Mol Cell Proteomics ; 13(5): 1273-85, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24637012

RESUMEN

The serotonin 5-HT(2A) receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT(2A) receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT(2A) receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT(2A) agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser(280)) located in the third intracellular loop of the 5-HT(2A) receptor, a region important for its desensitization. The specific phosphorylation of Ser(280) by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT(2A) receptors at Ser(280) in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser(280) to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased phosphorylation of the 5-HT(2A) receptor in response to hallucinogenic versus nonhallucinogenic agonists, which underlies their distinct capacity to desensitize the receptor.


Asunto(s)
Anfetaminas/farmacología , Alucinógenos/farmacología , Lisurida/farmacología , Receptor de Serotonina 5-HT2A/metabolismo , Serina/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Animales , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Neuronas/metabolismo , Fosforilación , Corteza Prefrontal/metabolismo , Proteómica/métodos , Transducción de Señal/efectos de los fármacos
7.
Bioorg Med Chem Lett ; 24(2): 510-4, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24374277

RESUMEN

The tachykinin NK1 and NK3 receptors are a novel drug target for schizophrenia in order to treat not only the positive and cognitive symptoms, but also the associated co-morbid depression and sleep disturbances associated with the disease. A novel class of peptidomimetic derivatives based on a versatile phenylglycine central core was synthesized and tested in vitro as dual NK1/NK3 receptor antagonists. From this series emerged compounds with good NK1 receptor affinity, although only modest dual NK1/NK3 receptor affinity was observed with one of these analogs.


Asunto(s)
Antipsicóticos/síntesis química , Diseño de Fármacos , Antagonistas del Receptor de Neuroquinina-1/síntesis química , Receptores de Neuroquinina-1 , Receptores de Neuroquinina-3/antagonistas & inhibidores , Antipsicóticos/metabolismo , Antagonistas del Receptor de Neuroquinina-1/metabolismo , Receptores de Neuroquinina-1/metabolismo , Receptores de Neuroquinina-3/metabolismo , Relación Estructura-Actividad
8.
J Biol Chem ; 287(12): 8864-78, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22291025

RESUMEN

Human dopamine D(2long) and D(3) receptors were modified by N-terminal addition of SNAP or CLIP forms of O(6)-alkylguanine-DNA-alkyltransferase plus a peptide epitope tag. Cells able to express each of these four constructs only upon addition of an antibiotic were established and used to confirm regulated and inducible control of expression, the specificity of SNAP and CLIP tag covalent labeling reagents, and based on homogenous time-resolved fluorescence resonance energy transfer, the presence of cell surface D(2long) and D(3) receptor homomers. Following constitutive expression of reciprocal constructs, potentially capable of forming and reporting the presence of cell surface D(2long)-D(3) heteromers, individual clones were assessed for levels of expression of the constitutively expressed protomer. This was unaffected by induction of the partner protomer and the level of expression of the partner required to generate detectable cell surface D(2long)-D(3) heteromers was defined. Such homomers and heteromers were found to co-exist and using a reconstitution of function approach both homomers and heteromers of D(2long) and D(3) receptors were shown to be functional, potentially via trans-activation of associated G protein. These studies demonstrate the ability of dopamine D(2long) and D(3) receptors to form both homomers and heteromers, and show that in cells expressing each subtype a complex mixture of homomers and heteromers co-exists at steady state. These data are of potential importance both to disorders in which D(2long) and D(3) receptors are implicated, like schizophrenia and Parkinson disease, and also to drugs exerting their actions via these sites.


Asunto(s)
Membrana Celular/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Línea Celular , Membrana Celular/química , Membrana Celular/genética , Dimerización , Dopamina/metabolismo , Humanos , Unión Proteica , Receptores de Dopamina D2/química , Receptores de Dopamina D2/genética , Receptores de Dopamina D3/química , Receptores de Dopamina D3/genética
9.
J Neurochem ; 125(4): 532-44, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23410496

RESUMEN

D2/D3 dopamine receptors (D2R/D3R) agonists regulate Akt, but their effects display a complex time-course. In addition, the respective roles of D2R and D3R are not defined and downstream targets remain poorly characterized, especially in vivo. These issues were addressed here for D3R. Systemic administration of quinelorane, a D2R/D3R agonist, transiently increased phosphorylation of Akt and GSK-3ß in rat nucleus accumbens and dorsal striatum with maximal effects 10 min after injection. Akt activation was associated with phosphorylation of several effectors of the mammalian target of rapamycin complex 1 (mTORC1): p70S6 kinase, ribosomal protein-S6 (Ser240/244), and eukaryotic initiation factor-4E binding protein-1. The action of quinelorane was antagonized by a D2/D3R antagonist, raclopride, and the selective D3R antagonist S33084, inactive by themselves. Furthermore, no effect of quinerolane was seen in knock-out mice lacking D3R. In drd1a-EGFP transgenic mice, quinelorane activated Akt/GSK-3ß in both neurons expressing and lacking D1 receptor. Thus, the stimulation of D3R transiently activates the Akt/GSK-3ß pathway in the two populations of medium-size spiny neurons of the nucleus accumbens and dorsal striatum. This effect may contribute to the influence of D3R ligands on reward, cognition, and processes disrupted in schizophrenia, drug abuse, and Parkinson's disease.


Asunto(s)
Cuerpo Estriado/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Núcleo Accumbens/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Dopamina D3/metabolismo , Animales , Cuerpo Estriado/efectos de los fármacos , Agonistas de Dopamina/farmacología , Glucógeno Sintasa Quinasa 3 beta , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos , Núcleo Accumbens/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Quinolinas/farmacología , Ratas , Ratas Wistar , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR
10.
Biol Psychiatry Glob Open Sci ; 3(4): 1053-1061, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37881541

RESUMEN

Background: Disrupted motivational control is a common-but poorly treated-feature of psychiatric disorders, arising via aberrant mesolimbic dopaminergic signaling. GPR88 is an orphan G protein-coupled receptor that is highly expressed in the striatum and therefore well placed to modulate disrupted signaling. While the phenotype of Gpr88 knockout mice suggests a role in motivational pathways, it is unclear whether GPR88 is involved in reward valuation and/or effort-based decision making in a sex-dependent manner and whether this involves altered dopamine function. Methods: In male and female Gpr88 knockout mice, we used touchscreen-based progressive ratio, with and without reward devaluation, and effort-related choice tasks to assess motivation and cost/benefit decision making, respectively. To explore whether these motivational behaviors were related to alterations in the striatal dopamine system, we quantified expression of dopamine-related genes and/or proteins and used [18F]DOPA positron emission tomography and GTPγ[35S] binding to assess presynaptic and postsynaptic dopamine function, respectively. Results: We showed that male and female Gpr88 knockout mice displayed greater motivational drive than wild-type mice, which was maintained following reward devaluation. Furthermore, we showed that cost/benefit decision making was impaired in male, but not female, Gpr88 knockout mice. Surprisingly, we found that Gpr88 deletion had no effect on striatal dopamine by any of the measures assessed. Conclusions: Our results highlight that GPR88 regulates motivational control but that disruption of such behaviors following Gpr88 deletion occurs independently of gross perturbations to striatal dopamine at a gene, protein, or functional level. This work provides further insights into GPR88 as a drug target for motivational disorders.

11.
J Pharmacol Exp Ther ; 340(3): 750-64, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22178752

RESUMEN

Although most antidepressants suppress serotonin (5-HT) and/or noradrenaline reuptake, blockade of 5-HT(2C) receptors and α(2)-adrenoceptors likewise enhances monoaminergic transmission. These sites are targeted by the urea derivative N- [4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-1,2-dihydro-3-H-benzo[e]indole-3-carboxamide (S32212). S32212 was devoid of affinity for monoamine reuptake sites, yet displayed pronounced affinity (pK(i), 8.2) for constitutively active human 5-HT(2CINI) (h5-HT(2CINI)) receptors, behaving as an inverse agonist in reducing basal Gα(q) activation, [(3)H]inositol-phosphate production, and the spontaneous association of h5-HT(2CINI)-Renilla luciferase receptors with ß-arrestin2-yellow fluorescent protein. Furthermore, upon 18-h pretreatment, S32212 enhanced the plasma membrane expression of h5-HT(2CINI) receptors as visualized by confocal microscopy and quantified by enzyme-linked immunosorbent assay. Its actions were prevented by the neutral antagonist 6-chloro-5-methyl-N-[6-(2-methylpyridin-3-yloxy)pyridin-3-yl]indoline-1-carboxamide (SB242,084), which also impeded the induction by long-term exposure to S32212 of otherwise absent Ca(2+) mobilization in mouse cortical neurones. In vivo, S32212 blunted the inhibitory influence of the 5-HT(2C) agonist 2-(3-chlorobenzyloxy)-6-(1-piperazinyl)pyrazine (CP809,101) on ventrotegmental dopaminergic neurones. S32212 also blocked 5-HT-induced Gα(q) and phospholipase C activation at the h5-HT(2A) and, less potently, h5-HT(2B) receptors and suppressed the discriminative stimulus properties of the 5-HT(2A) agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane in rats. S32212 manifested marked affinity for human α(2A)- (pK(i) 7.2), α(2B)- (pK(i) 8.2), and α(2C)- (pK(i) 7.4) adrenoceptors, at which it abolished noradrenaline-induced recruitment of Gα(i3), Gα(o), adenylyl cyclase, and extracellular-regulated kinase1/2. Moreover, S32212 dose-dependently abolished the discriminative stimulus effects of the α(2)-adrenoceptor agonist (S)-spiro[(1-oxa-2-amino-3-azacyclopent-2-ene)-4,2'-(1',2',3',4'-tetrahydronaphthalene)] (S18616). Finally, S32212 displayed negligible affinity for α(1A)-adrenoceptors, histamine H(1) receptors, and muscarinic M(1) receptors. In conclusion, S32212 behaves as an inverse agonist at h5-HT(2C) receptors and as an antagonist at human α(2)-adrenoceptors (and h5-HT(2A) receptors). Its promising profile in preclinical models potentially relevant to the treatment of depression is described in J Pharmacol Exp Ther 340:765-780, 2012.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Antidepresivos/farmacología , Indoles/farmacología , Piperazinas/farmacología , Receptor de Serotonina 5-HT2C/efectos de los fármacos , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Animales , Células CHO , Calcio/metabolismo , Cricetinae , Cricetulus , Agonismo Inverso de Drogas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Erección Peniana/efectos de los fármacos , Ratas , Ratas Wistar , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Receptor de Serotonina 5-HT2B/efectos de los fármacos
12.
Eur J Pharmacol ; 925: 175016, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35545150

RESUMEN

(+)-4-Propyl-9-hydroxynaphthoxazine ((+)PHNO) is a high affinity, preferential dopamine D3 versus D2 agonist employed in view of its high specificity and excellent signal-to-noise ratio as a radiotracer for positron emission tomography (PET) imaging. Surprisingly, its profile at other classes of monoamine receptor remains undocumented. In addition to hD3 and hD2L receptors, (+)PHNO revealed high affinity at hD4.4 but not hD1 or hD5 receptors. It also revealed significant affinity for several other G protein-coupled monoaminergic receptors, in particular h5-HT1A and h5-HT7. (+)PHNO behaved as a full agonist at hD4.4 and h5-HT1A receptors with potencies comparable to its actions at hD3 and hD2L receptors, and with less potency at 5-HT7 receptors. In binding assays with membranes derived from cells co-expressing hD3 and hD2L receptors and labeled with [3H]Nemonapride or [3H]Spiperone, the proportion of high affinity binding sites recognized by (+)PHNO was higher than an equivalent mixture of membranes from cells expressing hD3or hD2L receptors, suggesting that (+)PHNO promotes formation of hD3-hD2L heterodimers. Further, in cells co-expressing hD3 and hD2L receptors, (+)PHNO showed higher efficacy for inhibiting forskolin stimulated adenylyl cyclase and inducing adenylyl cyclase super-sensitization than in cells transfected with only hD2L receptors. In conclusion, (+)PHNO is a potent agonist at hD4.4, h5-HT1A and h5-HT7 as well as hD3 and hD2L receptors, and it potently activates dopamine hD3-hD2L heterodimers. These interactions should be considered when interpreting PET studies with [11C](+)PHNO and may be relevant to its functional and potential clinical properties in Parkinson's disease and other disorders.


Asunto(s)
Dopamina , Receptores de Dopamina D2 , Adenilil Ciclasas , Dopamina/metabolismo , Agonistas de Dopamina/farmacología , Oxazinas , Tomografía de Emisión de Positrones/métodos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo
13.
Mol Pharmacol ; 79(1): 91-105, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20952497

RESUMEN

Although dopamine (DA) regulates the serine/threonine kinase Akt and its downstream substrate glycogen synthase kinase-3ß (GSK-3ß), the direct influence of dopaminergic receptors remains poorly characterized. Short-term incubation of Chinese hamster ovary (CHO)-expressed human (h)D(2L) and hD3) receptors with DA (maximal effect, 5-10 min) phosphorylated Akt (Thr308 and Ser473) and GSK-3ß (Ser9), actions blocked by the selective D2 and D3 antagonists, 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-l-yl]methyl-1H-indole (L741,626) and (3aR,9bS)-N[4-(8-cyano-1,3a,4,9b-tetrahydro-3H-benzopyrano[3,4-c]pyrrole-2-yl)-butyl] (4-phenyl)benzamide (S33084), respectively. Similar findings were acquired with the specific D2/D3 receptor agonist quinelorane, which also enhanced (10 min after administration) levels of p-Akt and p-GSK-3ß in rat nucleus accumbens, an action blocked by the D2/D3 receptor antagonist raclopride. Akt and GSK-3ß phosphorylation mediated via CHO-expressed hD(2L) and hD3 receptors was prevented by pertussis toxin and by inhibitors of insulin-like growth factor-1 receptors as well as phosphatidylinositol 3-kinase and Src. Likewise, chelation of intracellular Ca²+ and interference with an "atypical" phorbol ester-insensitive protein kinase C (PKC) abolished recruitment of Akt and GSK-3ß. Inactivation of PKCµ blocked Akt and GSK-3ß phosphorylation at hD(2L) receptors. However, blockade of conventional PKC isoforms attenuated the actions of DA at hD3 receptors only. Furthermore, phospholipase C (PLC), calmodulin, and Akt inhibitors abolished DA-induced GSK-3ß phosphorylation by hD3 receptors, whereas phosphorylation by hD(2L) receptors partially involved calmodulin, Akt, and extracellular signal-regulated kinase (ERK) 1/2. In conclusion, at both hD(2L) and hD3 receptors, DA elicited a G(i/o)- and Ca²+/calmodulin-dependent phosphorylation of Akt and GSK-3ß via transactivation of insulin-like growth factor 1 receptor. However, significant differences were seen regarding the involvement of PLC, calmodulin, and ERK1/2.


Asunto(s)
Corteza Cerebral/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Transducción de Señal/fisiología , Animales , Células CHO , Clonación Molecular/métodos , Cricetinae , Cricetulus , Glucógeno Sintasa Quinasa 3 beta , Humanos , Masculino , Fosforilación/fisiología , Ratas , Ratas Wistar , Receptores de Dopamina D2/genética , Receptores de Dopamina D3/genética
14.
Int J Neuropsychopharmacol ; 14(6): 768-83, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20946699

RESUMEN

The novel antidepressant, agomelatine, behaves as an agonist at melatonergic receptors, and as an antagonist at edited, human serotonin2C(VSV) receptors [h5-HT2C(VSV)Rs]. However, its actions at constitutively active 5-HT2CRs have yet to be characterized, an issue addressed herein. At unedited h5-HT2C(INI)Rs expressed in HEK-293 cells, 5-HT enhanced [35S]GTPγS binding to Gαq, whereas the inverse agonists SB206,553 and S32006 inhibited binding and, by analogy to the neutral antagonist, SB242,084, agomelatine exerted no effect alone. Mirroring these observations, 5-HT stimulated, whereas SB206,553 and S32006 inhibited, [3H]inositol phosphate formation. Both the agonist actions of 5-HT and the inverse agonist actions of SB206,553 and S32006 were abolished by agomelatine and SB242,084. As demonstrated by bioluminescence resonance energy transfer, 5-HT enhanced, whereas SB206,553 and S32006 decreased, association of 'h5-HT2C(INI)-Rluc-tagged' receptors with yellow-fluorescence-protein-coupled ß-arrestin2. These actions of 5-HT, SB206,553 and S32006 were prevented by agomelatine and SB242,084 were ineffective alone. As shown by ELISA and confocal microscopy, prolonged (18 h) exposure to SB206,553 or S32006 enhanced cell surface expression of N-terminal Flag-tagged h5-HT2C(INI)Rs: these effects were blocked by agomelatine and SB242,084, which were inactive alone. Finally, following pre-exposure to SB206,553 or S32006 for 18 h, 5-HT triggered 5-HT2CR-mediated elevations in cytosolic Ca2+ in primary cultures of mice cortical neurons. Agomelatine and SB242,084, inactive alone, prevented these actions of SB206,553 and S32006. In conclusion, agomelatine behaves as a neutral antagonist at constitutively active h5-HT2C(INI)Rs and native, cortical 5-HT2CRs. It will be of interest to determine whether the neutral antagonist properties of agomelatine are related to its favourable clinical profile of antidepressant properties with few side-effects and no discontinuation syndrome.


Asunto(s)
Acetamidas/farmacología , Antidepresivos/farmacología , Receptores de Melatonina/agonistas , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Animales , Arrestinas/genética , Arrestinas/metabolismo , Señalización del Calcio/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células HEK293 , Humanos , Cinética , Ligandos , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Receptor de Serotonina 5-HT2C/genética , Receptor de Serotonina 5-HT2C/metabolismo , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo , Serotonina/metabolismo , beta-Arrestinas
15.
Acta Neuropathol Commun ; 9(1): 177, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727983

RESUMEN

In Alzheimer's disease and related tauopathies, trans-synaptic transfer and accumulation of pathological tau from donor to recipient neurons is thought to contribute to disease progression, but the underlying mechanisms are poorly understood. Using complementary in vivo and in vitro models, we examined the relationship between these two processes and neuronal clearance. Accumulation of p62 (a marker of defective protein clearance) correlated with pathological tau accumulation in two mouse models of tauopathy spread; Entorhinal Cortex-tau (EC-Tau) mice where tau pathology progresses in time from EC to other brain regions, and PS19 mice injected with tau seeds. In both models and in several brain regions, p62 colocalized with human tau in a pathological conformation (MC1 antibody). In EC-Tau mice, p62 accumulated before overt tau pathology had developed and was associated with the presence of aggregation-competent tau seeds identified using a FRET-based assay. Furthermore, p62 accumulated in the cytoplasm of neurons in the dentate gyrus of EC-Tau mice prior to the appearance of MC1 positive tauopathy. However, MC1 positive tau was shown to be present at the synapse and to colocalize with p62 as shown by immuno electron microscopy. In vitro, p62 colocalized with tau inclusions in two primary cortical neuron models of tau pathology. In a three-chamber microfluidic device containing neurons overexpressing fluorescent tau, seeding of tau in the donor chamber led to tau pathology spread and p62 accumulation in both the donor and the recipient chamber. Overall, these data are in accordance with the hypothesis that the accumulation and trans-synaptic spread of pathological tau disrupts clearance mechanisms, preceding the appearance of obvious tau aggregation. A vicious cycle of tau accumulation and clearance deficit would be expected to feed-forward and exacerbate disease progression across neuronal circuits in human tauopathies.


Asunto(s)
Encéfalo/patología , Neuronas/patología , Proteína Sequestosoma-1/metabolismo , Tauopatías/patología , Animales , Encéfalo/metabolismo , Progresión de la Enfermedad , Humanos , Ratones , Neuronas/metabolismo , Tauopatías/metabolismo
16.
Genes Brain Behav ; 20(2): e12710, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33078498

RESUMEN

The GPR88 orphan G protein-coupled receptor is expressed throughout the striatum, being preferentially localised in medium spiny neurons. It is also present in lower densities in frontal cortex and thalamus. Rare mutations in humans suggest a role in cognition and motor function, while common variants are associated with psychosis. Here we evaluate the influence of genetic deletion of GPR88 upon performance in translational tasks interrogating motivation, reward evaluation and cognitive function. In an automated radial arm maze 'N-back' working memory task, Gpr88 KO mice showed impaired correct responding, suggesting a role for GPR88 receptors in working memory circuitry. Associative learning performance was similar to wild-type controls in a touchscreen task but performance was impaired at the reversal learning stage, suggesting cognitive inflexibility. Gpr88 KO mice showed higher breakpoints, reduced latencies and lengthened session time in a progressive ratio task consistent with enhanced motivation. Simultaneously, locomotor hyperactivity was apparent in this task, supporting previous findings of actions of GPR88 in a cortico-striatal-thalamic motor loop. Evidence for a role of GPR88 in reward processing was demonstrated in a touchscreen-based equivalent of the Iowa gambling task. Although both Gpr88 KO and wild-type mice showed a preference for an optimum contingency choice, Gpr88 KO mice selected more risky choices at the expense of more advantageous lower risk options. Together these novel data suggest that striatal GPR88 receptors influence activity in a range of procedures integrated by prefrontal, orbitofrontal and anterior cingulate cortico-striatal-thalamic loops leading to altered cognitive, motivational and reward evaluation processes.


Asunto(s)
Cognición , Memoria a Corto Plazo , Receptores Acoplados a Proteínas G/genética , Recompensa , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiología , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Motora/metabolismo , Corteza Motora/fisiología , Asunción de Riesgos , Tálamo/metabolismo , Tálamo/fisiología
17.
Mol Pharmacol ; 78(5): 925-34, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20702763

RESUMEN

In view of the therapeutic importance of dopamine D(3) and D(2) receptors, there remains considerable interest in novel ligands. Herein, we show that the tetrahydroisoquinoline 1H-indole-2-carboxylic acid {4-[2-(cyano-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-cyclohexyl}-amide (SB269,652) behaves as an atypical, allosteric antagonist at D(3) and D(2) receptors. Accordingly, SB269,652 potently (low nanomolar range) abolished specific binding of [(3)H]nemanopride and [(3)H]spiperone to Chinese hamster ovary-transfected D(3) receptors when radioligands were used at 0.2 and 0.5 nM, respectively. However, even at high concentrations (5 µM), SB269,652 only submaximally inhibited the specific binding of these radioligands when they were employed at 10-fold higher concentrations. By analogy, although SB269,652 potently blocked D(3) receptor-mediated activation of Gα(i3) and phosphorylation of extracellular-signal-regulated kinase (ERK)1/2, when concentrations of dopamine were increased by 10-fold, from 1 µM to 10 µM, SB269,652 only submaximally inhibited dopamine-induced stimulation of Gα(i3). SB269,652 (up to 10 µM) only weakly and partially (by approximately 20-30%) inhibited radioligand binding to D(2) receptors. Likewise, SB269,652 only submaximally suppressed D(2) receptor-mediated stimulation of Gα(i3) and Gα(qi5) (detected with the aequorin assay) and phosphorylation of ERK1/2 and Akt. Furthermore, SB269,652 only partially (35%) inhibited the dopamine-induced recruitment of ß-arrestin2 to D(2) receptors. Finally, Schild analysis using Gα(i3) assays, and studies of radioligand association and dissociation kinetics, supported allosteric actions of SB269,652 at D(3) and D(2) receptors.


Asunto(s)
Antagonistas de los Receptores de Dopamina D2 , Indoles/farmacología , Isoquinolinas/farmacología , Receptores de Dopamina D3/antagonistas & inhibidores , Tetrahidroisoquinolinas/farmacología , Regulación Alostérica , Animales , Arrestinas/metabolismo , Línea Celular , Chlorocebus aethiops , Cricetinae , Cricetulus , Dopamina/farmacología , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Transporte de Proteínas , Quinpirol/farmacología , Ensayo de Unión Radioligante , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/genética , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/genética , beta-Arrestinas
18.
Neuropharmacology ; 162: 107829, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31666199

RESUMEN

Parkinson's disease (PD) is characterized by progressive loss of midbrain dopaminergic neurons and treated with the dopamine precursor, 3,4-dihydroxy-l-phenylalanine (L-DOPA). Prolonged L-DOPA treatment is however associated with waning efficacy and the induction of L-DOPA induced dyskinesia (LID). GPR88 is an orphan G-protein Coupled Receptor (GPCR) expressed in dopaminoceptive striatal medium spiny neurons (MSNs) and their afferent corticostriatal glutamatergic neurons. Here, we studied the role of GPR88 in experimental parkinsonism and LID. Chronic L-DOPA administration to male GPR88 KO mice, subjected to unilateral 6-hydroxydopamine (6-OHDA) lesions of the medial forebrain bundle, resulted in more rotations than in their WT counterparts. Conversely, GPR88 KO mice had a lower abnormal involuntary movements (AIMs) score. These behavioral responses were accompanied by altered transcription of L-DOPA upregulated genes in lesioned GPR88 KO compared to WT striata. In accordance with a role for serotonin neurons in LID development, WT but not GPR88 KO striata exhibited 5-hydroxytryptamine displacement upon repeated L-DOPA treatment. Intact male GPR88 KO mice showed diminished tacrine-induced PD-like tremor and spontaneous hyperlocomotion. Dopamine and its metabolites were not increased in male GPR88 KO mice, but biosensor recordings revealed increased spontaneous/basal and evoked glutamate release in striata of male GPR88 KO mice. In conclusion, genetic deletion of GPR88 promotes l-DOPA-induced rotation and spontaneous locomotion yet suppresses the induction of LIDs and also reduces tremor. These data provide behavioral, neurochemical and molecular support that GPR88 antagonism may favour motor relief in PD patients without aggravating the induction of motor side effects.


Asunto(s)
Antiparkinsonianos/farmacología , Cuerpo Estriado/metabolismo , Discinesia Inducida por Medicamentos/genética , Levodopa/farmacología , Locomoción/efectos de los fármacos , Movimiento/efectos de los fármacos , Trastornos Parkinsonianos/genética , Receptores Acoplados a Proteínas G/genética , Adrenérgicos/toxicidad , Animales , Inhibidores de la Colinesterasa/toxicidad , Cuerpo Estriado/efectos de los fármacos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Discinesia Inducida por Medicamentos/etiología , Discinesia Inducida por Medicamentos/metabolismo , Discinesia Inducida por Medicamentos/fisiopatología , Neuronas GABAérgicas , Ácido Glutámico/metabolismo , Locomoción/genética , Masculino , Haz Prosencefálico Medial , Ratones , Ratones Noqueados , Plasticidad Neuronal/genética , Oxidopamina/toxicidad , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/fisiopatología , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Serotonina/metabolismo , Tacrina/toxicidad , Temblor
19.
Neuropharmacology ; 177: 108099, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32525060

RESUMEN

To date, there are no interventions that impede the inexorable progression of Alzheimer's disease (AD), and currently-available drugs cholinesterase (AChE) inhibitors and the N-Methyl-d-Aspartate receptor antagonist, memantine, offer only modest symptomatic benefit. Moreover, a range of mechanistically-diverse agents (glutamatergic, histaminergic, monoaminergic, cholinergic) have disappointed in clinical trials, alone and/or in association with AChE inhibitors. This includes serotonin (5-HT) receptor-6 antagonists, despite compelling preclinical observations in rodents and primates suggesting a positive influence on cognition. The emphasis has so far been on high selectivity. However, for a multi-factorial disorder like idiopathic AD, 5-HT6 antagonists possessing additional pharmacological actions might be more effective, by analogy to "multi-target" antipsychotics. Based on this notion, drug discovery programmes have coupled 5-HT6 blockade to 5-HT4 agonism and inhibition of AchE. Further, combined 5-HT6/dopamine D3 receptor (D3) antagonists are of especial interest since D3 blockade mirrors 5-HT6 antagonism in exerting broad-based pro-cognitive properties in animals. Moreover, 5-HT6 and dopamine D3 antagonists promote neurocognition and social cognition via both distinctive and convergent actions expressed mainly in frontal cortex, including suppression of mTOR over-activation and reinforcement of cholinergic and glutamatergic transmission. In addition, 5-HT6 blockade affords potential anti-anxiety, anti-depressive and anti-epileptic properties, and antagonising 5-HT6 receptors may be associated with neuroprotective ("disease-modifying") properties. Finally D3 antagonism may counter psychotic episodes and D3 receptors themselves offer a promising hub for multi-target agents. The present article reviews the status of "R and D" into multi-target 5-HT6 and D3 ligands for improved treatment of AD and other neurodegenerative disorders of aging. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Receptores de Dopamina D3/metabolismo , Receptores de Serotonina/metabolismo , Enfermedad de Alzheimer/psicología , Animales , Cognición/efectos de los fármacos , Cognición/fisiología , Disfunción Cognitiva/psicología , Dopaminérgicos/administración & dosificación , Antagonistas de Dopamina/administración & dosificación , Humanos , Receptores de Dopamina D3/antagonistas & inhibidores , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Antagonistas de la Serotonina/administración & dosificación , Cognición Social
20.
Trends Pharmacol Sci ; 29(9): 454-64, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18676031

RESUMEN

The broadly distributed monoaminergic neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) exerts its actions via 14 classes of receptor. With the exception of 5-HT3 receptors, which gate a cation-permeable ion channel, all 5-HT receptors are coupled to G proteins. The core features of transduction via 5-HT receptors are well established, but much still remains to be learned, in particular, with regard to native populations in the brain. In this article, we survey the current knowledge of cellular signaling at G-protein-coupled 5-HT receptors and focus on several novel (and surprising) insights that have emerged over the past few years. We also highlight several promising directions for future research that should improve the understanding of serotonin signaling and ultimately permit its therapeutic exploitation in the control of central nervous system disorders. In view of the diversity of transduction mechanisms engaged by 5-HT, much of this discussion is relevant to other classes of G-protein-coupled receptors.


Asunto(s)
Receptores Acoplados a Proteínas G/fisiología , Receptores de Serotonina/fisiología , Transducción de Señal/fisiología , Animales , Humanos , Receptor Cross-Talk/efectos de los fármacos , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores de Serotonina/efectos de los fármacos , Serotonina/farmacología , Serotoninérgicos/farmacología , Agonistas de Receptores de Serotonina/farmacología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda