Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918735

RESUMEN

Stem cells secrete paracrine factors including extracellular vesicles (EVs) which can mediate cellular communication and support the regeneration of injured tissues. Reduced oxygen (hypoxia) as a key regulator in development and regeneration may influence cellular communication via EVs. We asked whether hypoxic conditioning during human induced pluripotent stem cell (iPSC) culture effects their EV quantity, quality or EV-based angiogenic potential. We produced iPSC-EVs from large-scale culture-conditioned media at 1%, 5% and 18% air oxygen using tangential flow filtration (TFF), with or without subsequent concentration by ultracentrifugation (TUCF). EVs were quantified by tunable resistive pulse sensing (TRPS), characterized according to MISEV2018 guidelines, and analyzed for angiogenic potential. We observed superior EV recovery by TFF compared to TUCF. We confirmed hypoxia efficacy by HIF-1α stabilization and pimonidazole hypoxyprobe. EV quantity did not differ significantly at different oxygen conditions. Significantly elevated angiogenic potential was observed for iPSC-EVs derived from 1% oxygen culture by TFF or TUCF as compared to EVs obtained at higher oxygen or the corresponding EV-depleted soluble factor fractions. Data thus demonstrate that cell-culture oxygen conditions and mode of EV preparation affect iPSC-EV function. We conclude that selecting appropriate protocols will further improve production of particularly potent iPSC-EV-based therapeutics.


Asunto(s)
Vesículas Extracelulares/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Neovascularización Fisiológica , Transporte Biológico , Biomarcadores , Hipoxia de la Célula , Autorrenovación de las Células , Células Cultivadas , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Medicina Regenerativa/métodos
2.
Nat Protoc ; 19(7): 1911-1939, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38548938

RESUMEN

A promising cell-therapy approach for heart failure aims at differentiating human pluripotent stem cells (hPSCs) into functional cardiomyocytes (CMs) in vitro to replace the disease-induced loss of patients' heart muscle cells in vivo. But many challenges remain for the routine clinical application of hPSC-derived CMs (hPSC-CMs), including good manufacturing practice (GMP)-compliant production strategies. This protocol describes the efficient generation of hPSC-CM aggregates in suspension culture, emphasizing process simplicity, robustness and GMP compliance. The strategy promotes clinical translation and other applications that require large numbers of CMs. Using a simple spinner-flask platform, this protocol is applicable to a broad range of users with general experience in handling hPSCs without extensive know-how in biotechnology. hPSCs are expanded in monolayer to generate the required cell numbers for process inoculation in suspension culture, followed by stirring-controlled formation of cell-only aggregates at a 300-ml scale. After 48 h at checkpoint (CP) 0, chemically defined cardiac differentiation is induced by WNT-pathway modulation through use of the glycogen-synthase kinase-3 inhibitor CHIR99021 (WNT agonist), which is replaced 24 h later by the chemical WNT-pathway inhibitor IWP-2. The exact application of the described process parameters is important to ensure process efficiency and robustness. After 10 d of differentiation (CP I), the production of ≥100 × 106 CMs is expected. Moreover, to 'uncouple' cell production from downstream applications, continuous maintenance of CM aggregates for up to 35 d in culture (CP II) is demonstrated without a reduction in CM content, supporting downstream logistics while potentially overcoming the requirement for cryopreservation.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Miocitos Cardíacos , Células Madre Pluripotentes , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Humanos , Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
3.
Stem Cell Res Ther ; 15(1): 89, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528578

RESUMEN

BACKGROUND: Human pluripotent stem cells (hPSCs) have an enormous therapeutic potential, but large quantities of cells will need to be supplied by reliable, economically viable production processes. The suspension culture (three-dimensional; 3D) of hPSCs in stirred tank bioreactors (STBRs) has enormous potential for fuelling these cell demands. In this study, the efficient long-term matrix-free suspension culture of hPSC aggregates is shown. METHODS AND RESULTS: STBR-controlled, chemical aggregate dissociation and optimized passage duration of 3 or 4 days promotes exponential hPSC proliferation, process efficiency and upscaling by a seed train approach. Intermediate high-density cryopreservation of suspension-derived hPSCs followed by direct STBR inoculation enabled complete omission of matrix-dependent 2D (two-dimensional) culture. Optimized 3D cultivation over 8 passages (32 days) cumulatively yielded ≈4.7 × 1015 cells, while maintaining hPSCs' pluripotency, differentiation potential and karyotype stability. Gene expression profiling reveals novel insights into the adaption of hPSCs to continuous 3D culture compared to conventional 2D controls. CONCLUSIONS: Together, an entirely matrix-free, highly efficient, flexible and automation-friendly hPSC expansion strategy is demonstrated, facilitating the development of good manufacturing practice-compliant closed-system manufacturing in large scale.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Pluripotentes , Humanos , Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Reactores Biológicos , Criopreservación
4.
Stem Cell Res Ther ; 15(1): 213, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39020441

RESUMEN

BACKGROUND: Commonly used media for the differentiation of human pluripotent stem cells into cardiomyocytes (hPSC-CMs) contain high concentrations of proteins, in particular albumin, which is prone to quality variations and presents a substantial cost factor, hampering the clinical translation of in vitro-generated cardiomyocytes for heart repair. To overcome these limitations, we have developed chemically defined, entirely protein-free media based on RPMI, supplemented with L-ascorbic acid 2-phosphate (AA-2P) and either the non-ionic surfactant Pluronic F-68 or a specific polyvinyl alcohol (PVA). METHODS AND RESULTS: Both media compositions enable the efficient, directed differentiation of embryonic and induced hPSCs, matching the cell yields and cardiomyocyte purity ranging from 85 to 99% achieved with the widely used protein-based CDM3 medium. The protein-free differentiation approach was readily up-scaled to a 2000 mL process scale in a fully controlled stirred tank bioreactor in suspension culture, producing > 1.3 × 109 cardiomyocytes in a single process run. Transcriptome analysis, flow cytometry, electrophysiology, and contractile force measurements revealed that the mass-produced cardiomyocytes differentiated in protein-free medium exhibit the expected ventricular-like properties equivalent to the well-established characteristics of CDM3-control cells. CONCLUSIONS: This study promotes the robustness and upscaling of the cardiomyogenic differentiation process, substantially reduces media costs, and provides an important step toward the clinical translation of hPSC-CMs for heart regeneration.


Asunto(s)
Diferenciación Celular , Medios de Cultivo , Miocitos Cardíacos , Humanos , Diferenciación Celular/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Medios de Cultivo/química , Medios de Cultivo/farmacología , Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/efectos de los fármacos , Células Cultivadas
5.
Nat Protoc ; 17(2): 513-539, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35039668

RESUMEN

Macrophages derived from human induced pluripotent stem cells (iPSCs) have the potential to enable the development of cell-based therapies for numerous disease conditions. We here provide a detailed protocol for the mass production of iPSC-derived macrophages (iPSC-Mac) in scalable suspension culture on an orbital shaker or in stirred-tank bioreactors (STBRs). This strategy is straightforward, robust and characterized by the differentiation of primed iPSC aggregates into 'myeloid-cell-forming-complex' intermediates by means of a minimal cytokine cocktail. In contrast to the 'batch-like differentiation approaches' established for other iPSC-derived lineages, myeloid-cell-forming-complex-intermediates are stably maintained in suspension culture and continuously generate functional and highly pure iPSC-Mac. Employing a culture volume of 120 ml in the STBR platform, ~1-4 × 107 iPSC-Mac can be harvested at weekly intervals for several months. The STBR technology allows for real-time monitoring of crucial process parameters such as biomass, pH, dissolved oxygen, and nutrition levels; the system also promotes systematic process development, optimization and linear upscaling. The process duration, from the expansion of iPSC until the first iPSC-Mac harvest, is 28 d. Successful application of the protocol requires expertise in pluripotent stem cell culture, differentiation and analytical methods, such as flow cytometry. Fundamental know-how in biotechnology is also advantageous to run the process in the STBR platform. The continuous, scalable production of well-defined iPSC-Mac populations is highly relevant to various fields, ranging from developmental biology, immunology and cell therapies to industrial applications for drug safety and discovery.


Asunto(s)
Células Madre Pluripotentes Inducidas
6.
STAR Protoc ; 2(4): 100988, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34917976

RESUMEN

The routine therapeutic and industrial applications of human pluripotent stem cells (hPSCs) require their constant mass supply by robust, efficient, and economically viable bioprocesses. Our protocol describes the fully controlled expansion of hPSCs in stirred tank bioreactors (STBRs) enabling cell densities of 35 × 106 cells/mL while reducing culture medium consumption by 75%. This is achieved by in silico process modeling and computable upscaling. We provide a detailed blueprint for systematic process development of hPSCs and their progenies. For complete details on the use and execution of this protocol, please refer to Manstein et al. (2021).


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Simulación por Computador , Células Madre Pluripotentes/citología , Células Cultivadas , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Humanos
7.
Blood Adv ; 5(23): 5190-5201, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34649271

RESUMEN

Primary or secondary immunodeficiencies are characterized by disruption of cellular and humoral immunity. Respiratory infections are a major cause of morbidity and mortality among immunodeficient or immunocompromised patients, with Staphylococcus aureus being a common offending organism. We propose here an adoptive macrophage transfer approach aiming to enhance impaired pulmonary immunity against S aureus. Our studies, using human-induced pluripotent stem cell-derived macrophages (iMφs), demonstrate efficient antimicrobial potential against methicillin-sensitive and methicillin-resistant clinical isolates of S aureus. Using an S aureus airway infection model in immunodeficient mice, we demonstrate that the adoptive transfer of iMφs is able to reduce the bacterial load more than 10-fold within 20 hours. This effect was associated with reduced granulocyte infiltration and less damage in lung tissue of transplanted animals. Whole transcriptome analysis of iMφs compared with monocyte-derived macrophages indicates a more profound upregulation of inflammatory genes early after infection and faster normalization 24 hours postinfection. Our data demonstrate high therapeutic efficacy of iMφ-based immunotherapy against S aureus infections and offer an alternative treatment strategy for immunodeficient or immunocompromised patients.


Asunto(s)
Células Madre Pluripotentes Inducidas , Infecciones del Sistema Respiratorio , Infecciones Estafilocócicas , Animales , Humanos , Macrófagos , Ratones , Infecciones Estafilocócicas/terapia , Staphylococcus aureus
8.
Stem Cells Transl Med ; 10(7): 1063-1080, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33660952

RESUMEN

To harness the full potential of human pluripotent stem cells (hPSCs) we combined instrumented stirred tank bioreactor (STBR) technology with the power of in silico process modeling to overcome substantial, hPSC-specific hurdles toward their mass production. Perfused suspension culture (3D) of matrix-free hPSC aggregates in STBRs was applied to identify and control process-limiting parameters including pH, dissolved oxygen, glucose and lactate levels, and the obviation of osmolality peaks provoked by high density culture. Media supplements promoted single cell-based process inoculation and hydrodynamic aggregate size control. Wet lab-derived process characteristics enabled predictive in silico modeling as a new rational for hPSC cultivation. Consequently, hPSC line-independent maintenance of exponential cell proliferation was achieved. The strategy yielded 70-fold cell expansion in 7 days achieving an unmatched density of 35 × 106 cells/mL equivalent to 5.25 billion hPSC in 150 mL scale while pluripotency, differentiation potential, and karyotype stability was maintained. In parallel, media requirements were reduced by 75% demonstrating the outstanding increase in efficiency. Minimal input to our in silico model accurately predicts all main process parameters; combined with calculation-controlled hPSC aggregation kinetics, linear process upscaling is also enabled and demonstrated for up to 500 mL scale in an independent bioreactor system. Thus, by merging applied stem cell research with recent knowhow from industrial cell fermentation, a new level of hPSC bioprocessing is revealed fueling their automated production for industrial and therapeutic applications.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Pluripotentes , Reactores Biológicos , Diferenciación Celular , Simulación por Computador , Medios de Cultivo , Humanos , Células Madre Pluripotentes/citología
9.
Pharmaceutics ; 13(7)2021 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-34371788

RESUMEN

In this work, a method for the preparation of the highly lipophilic labeling synthon [89Zr]Zr(oxinate)4 was optimized for the radiolabeling of liposomes and human induced pluripotent stem cells (hiPSCs). The aim was to establish a robust and reliable labeling protocol for enabling up to one week positron emission tomography (PET) tracing of lipid-based nanomedicines and transplanted or injected cells, respectively. [89Zr]Zr(oxinate)4 was prepared from oxine (8-hydroxyquinoline) and [89Zr]Zr(OH)2(C2O4). Earlier introduced liquid-liquid extraction methods were simplified by the optimization of buffering, pH, temperature and reaction times. For quality control, thin-layer chromatography (TLC), size-exclusion chromatography (SEC) and centrifugation were employed. Subsequently, the 89Zr-complex was incorporated into liposome formulations. PET/CT imaging of 89Zr-labeled liposomes was performed in healthy mice. Cell labeling was accomplished in PBS using suspensions of 3 × 106 hiPSCs, each. [89Zr]Zr(oxinate)4 was synthesized in very high radiochemical yields of 98.7% (96.8% ± 2.8%). Similarly, high internalization rates (≥90%) of [89Zr]Zr(oxinate)4 into liposomes were obtained over an 18 h incubation period. MicroPET and biodistribution studies confirmed the labeled nanocarriers' in vivo stability. Human iPSCs incorporated the labeling agent within 30 min with ~50% efficiency. Prolonged PET imaging is an ideal tool in the development of lipid-based nanocarriers for drug delivery and cell therapies. To this end, a reliable and reproducible 89Zr radiolabeling method was developed and tested successfully in a model liposome system and in hiPSCs alike.

10.
Nat Biotechnol ; 39(6): 737-746, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33558697

RESUMEN

Organoid models of early tissue development have been produced for the intestine, brain, kidney and other organs, but similar approaches for the heart have been lacking. Here we generate complex, highly structured, three-dimensional heart-forming organoids (HFOs) by embedding human pluripotent stem cell aggregates in Matrigel followed by directed cardiac differentiation via biphasic WNT pathway modulation with small molecules. HFOs are composed of a myocardial layer lined by endocardial-like cells and surrounded by septum-transversum-like anlagen; they further contain spatially and molecularly distinct anterior versus posterior foregut endoderm tissues and a vascular network. The architecture of HFOs closely resembles aspects of early native heart anlagen before heart tube formation, which is known to require an interplay with foregut endoderm development. We apply HFOs to study genetic defects in vitro by demonstrating that NKX2.5-knockout HFOs show a phenotype reminiscent of cardiac malformations previously observed in transgenic mice.


Asunto(s)
Corazón/embriología , Intestinos/embriología , Organoides/embriología , Tipificación del Cuerpo , Desarrollo Embrionario , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Factor Nuclear 4 del Hepatocito/genética , Proteína Homeótica Nkx-2.5/genética , Humanos , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXF/genética , Análisis de Secuencia de ARN
11.
Artículo en Inglés | MEDLINE | ID: mdl-32793579

RESUMEN

Human cardiomyocytes (CMs) have potential for use in therapeutic cell therapy and high-throughput drug screening. Because of the inability to expand adult CMs, their large-scale production from human pluripotent stem cells (hPSC) has been suggested. Significant improvements have been made in understanding directed differentiation processes of CMs from hPSCs and their suspension culture-based production at chemically defined conditions. However, optimization experiments are costly, time-consuming, and highly variable, leading to challenges in developing reliable and consistent protocols for the generation of large CM numbers at high purity. This study examined the ability of data-driven modeling with machine learning for identifying key experimental conditions and predicting final CM content using data collected during hPSC-cardiac differentiation in advanced stirred tank bioreactors (STBRs). Through feature selection, we identified process conditions, features, and patterns that are the most influential on and predictive of the CM content at the process endpoint, on differentiation day 10 (dd10). Process-related features were extracted from experimental data collected from 58 differentiation experiments by feature engineering. These features included data continuously collected online by the bioreactor system, such as dissolved oxygen concentration and pH patterns, as well as offline determined data, including the cell density, cell aggregate size, and nutrient concentrations. The selected features were used as inputs to construct models to classify the resulting CM content as being "sufficient" or "insufficient" regarding pre-defined thresholds. The models built using random forests and Gaussian process modeling predicted insufficient CM content for a differentiation process with 90% accuracy and precision on dd7 of the protocol and with 85% accuracy and 82% precision at a substantially earlier stage: dd5. These models provide insight into potential key factors affecting hPSC cardiac differentiation to aid in selecting future experimental conditions and can predict the final CM content at earlier process timepoints, providing cost and time savings. This study suggests that data-driven models and machine learning techniques can be employed using existing data for understanding and improving production of a specific cell type, which is potentially applicable to other lineages and critical for realization of their therapeutic applications.

12.
Methods Mol Biol ; 1994: 79-91, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31124106

RESUMEN

This chapter describes a detailed protocol on human pluripotent stem cells (hPSCs) cultivation as matrix-free cell-only aggregates in defined and xeno-free culture medium in stirred tank bioreactors (STBRs). Starting with a frozen stock pre-expanded on conventional culture dishes (2D), the ultimate process is performed in 150 mL culture scale in stirred tank bioreactors (3D) and is designed to produce up to 500 million pluripotent hPSC within 7 days. The culture strategy includes perfusion-based cell feeding facilitating process control, automation, and higher cell yields. Ultimately, this detailed protocol describes an important step for generating a defined starting cell population for directed lineage differentiation and subsequently fueling human cell-based assays and regenerative medicine approaches.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes/citología , Automatización/métodos , Reactores Biológicos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Células Cultivadas , Medios de Cultivo , Humanos
13.
Methods Mol Biol ; 1994: 55-70, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31124104

RESUMEN

Cardiomyocytes from human pluripotent stem cells (hPSCs) have the ability to advance specificity of in vitro assays for drug discovery and safety pharmacology. They may also provide a superior cell source for envisioned cell therapies to repair damaged hearts. All applications will require the production of cardiomyocytes (CMs) by robust upscalable bioprocesses via industry-compliant technologies. This paper describes a detailed procedure for producing hPSC-CMs in stirred tank bioreactors in 100 ml process scale. The strategy combines both hPSC expansion in suspension culture and, directly followed by, cardiogenic differentiation using small molecule-Wnt pathway modulators. We also provide a protocol describing how to plan and expand the pluripotent stem cells to enable parallel inoculation of 4× 150 ml parallel bioreactor differentiations, potentially producing more than 240 × 106 cardiomyocytes in 22 days.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Benzotiazoles/farmacología , Reactores Biológicos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
14.
Cells ; 8(12)2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817235

RESUMEN

For the production and bio-banking of differentiated derivatives from human pluripotent stem cells (hPSCs) in large quantities for drug screening and cellular therapies, well-defined and robust procedures for differentiation and cryopreservation are required. Definitive endoderm (DE) gives rise to respiratory and digestive epithelium, as well as thyroid, thymus, liver, and pancreas. Here, we present a scalable, universal process for the generation of DE from human-induced pluripotent stem cells (hiPSCs) and embryonic stem cells (hESCs). Optimal control during the differentiation process was attained in chemically-defined and xeno-free suspension culture, and high flexibility of the workflow was achieved by the introduction of an efficient cryopreservation step at the end of DE differentiation. DE aggregates were capable of differentiating into hepatic-like, pancreatic, intestinal, and lung progenitor cells. Scale-up of the differentiation process using stirred-tank bioreactors enabled production of large quantities of DE aggregates. This process provides a useful advance for versatile applications of DE lineages, in particular for cell therapies and drug screening.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Diferenciación Celular , Linaje de la Célula , Endodermo/citología , Células Madre Embrionarias Humanas/citología , Células Madre Pluripotentes Inducidas/citología , Técnicas de Cultivo Celular por Lotes/instrumentación , Reactores Biológicos , Línea Celular , Criopreservación/métodos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda