Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Mater Lett ; 277: 128279, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32834256

RESUMEN

The earliest possible diagnosis and understanding of the infection mechanisms play a crucial role in the outcome of fighting viral diseases. Thus, we designed and developed for the first time, novel bioconjugates made of Ag-In-S@ZnS (ZAIS) fluorescent quantum dots coupled with ZIKA virus via covalent amide bond with carboxymethylcellulose (CMC) biopolymer for labeling and bioimaging the virus-host cell interactions mechanisms through confocal laser scanning microscopy. This work offers relevant insights regarding the profile of the ZIKA virus-nanoparticle conjugates interactions with VERO cells, which can be applied as a nanoplatform to elucidate the infection mechanisms caused by this viral disease.

2.
Bioconjug Chem ; 29(6): 1973-2000, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29790738

RESUMEN

Polymer-drug conjugation is an attractive approach for target delivering insoluble and highly toxic drugs to tumor sites to overcome the side-effects caused by cancer chemotherapy. In this study we designed and synthesized novel polymer-drug-peptide conjugates for improved specificity on targeting cancer cells. Chemically modified polysaccharide, carboxymethylcellulose (CMC), was conjugated with doxorubicin (DOX) anticancer drug by amide bonds and dually biofunctionalized with integrin-target receptor tripeptide (RGD) and l-arginine (R) as cell-penetrating amino acid for synergistic targeting and enhancing internalization by cancer cells. These bioconjugates were tested as prodrugs against bone, breast, and brain cancer cell lines (SAOS, MCF7, and U87) and a normal cell line (HEK 293T, reference). The physicochemical characterization showed the formation of amide bonds between carboxylates (-RCOO-) from CMC biopolymer and amino groups (-NH2) from DOX and peptides (RGD or R). Moreover, these polymer-drug-peptide bioconjugates formed nanoparticulate colloidal structures and behaved as "smart" drug delivery systems (DDS) promoting remarkable reduction of the cytotoxicity toward normal cells (HEK 293T) while retaining high killing activity against cancer cells. Based on cell viability bioassays, DNA-staining, and confocal laser microscopy, this effect was assigned to the association of physicochemical aspects with the difference of the endocytic pathways and the drug release rates in live cells caused by the biofunctionalization of the macromolecule-drug systems with RGD and l-arginine. In addition, chick chorioallantoic membrane (CAM) assay was performed as an in vivo xenograft model test, which endorsed the in vitro results of anticancer activities of these polymer-drug systems. Thus, prodrug nanocarriers based on CMC-DOX-peptide bioconjugates were developed for simultaneously integrin-targeting and high killing efficacy against cancer cells, while preserving healthy cells with promising perspectives in cancer chemotherapy.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Arginina/metabolismo , Carboximetilcelulosa de Sodio/metabolismo , Doxorrubicina/administración & dosificación , Portadores de Fármacos/metabolismo , Integrinas/metabolismo , Oligopéptidos/metabolismo , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Arginina/análogos & derivados , Carboximetilcelulosa de Sodio/análogos & derivados , Línea Celular Tumoral , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Pollos , Doxorrubicina/química , Doxorrubicina/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Células HEK293 , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Oligopéptidos/química
3.
J Environ Sci (China) ; 57: 312-320, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28647251

RESUMEN

This work describes the synthesis of catalysts based on red mud/polyethylene terephthalate (PET) composites and their subsequent heat treatment under N2 atmosphere. The materials were characterized by scanning electron microscopy (SEM), temperature programmed reduction (TPR), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric (TG) analysis and N2 adsorption/desorption. The catalysts were evaluated in the oxidative desulfurization reaction of dibenzothiophene (DBT) in a biphasic system. The results indicated that the PET impregnation on red mud increased the affinity of the catalyst with the nonpolar phase (fuel), in which the contaminant was dissolved, allowing a higher conversion (up to 80%) and selectivity to the corresponding dibenzothiophene sulfone. The sulfone compound is more polar than DBT and diffused into the polar solvent as indicated by the data obtained via gas chromatography-mass spectrometry (GC-MS).


Asunto(s)
Modelos Químicos , Tereftalatos Polietilenos/química , Adsorción , Catálisis , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de Fourier , Tiofenos
4.
Soft Matter ; 11(41): 8113-25, 2015 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-26335751

RESUMEN

Cationic polymers have recently attracted attention due to their proven potential for nonviral gene delivery. In this study, we report novel biocompatible nanocomplexes produced using chemically functionalized N,N,N-trimethyl chitosan (TMC) with different N-acyl chain lengths (C5-C18) associated with single-stranded oligonucleotides. The TMC derivatives were synthesized by covalent coupling reactions of quaternized chitosan with n-pentanoic (C5), n-decanoic (C10), and n-octadecanoic (C18) fatty acids, which were extensively characterized by Fourier transform-infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance ((1)H NMR). These N-acylated TMC derivatives (TMCn) were used as cationic polymeric matrices for encapsulating anionic 18-base single-stranded thiophosphorylated oligonucleotides (ssONs), leading to the formation of polyplexes further characterized by zeta potential (ZP), dynamic light scattering (DLS), binding affinity, transfection efficiency and in vitro cytotoxicity assays. The results demonstrated that the length of the grafted hydrophobic N-acyl chain and the relative amino:phosphate groups ratio (N/P ratio) between the TMC derivatives and ssON played crucial roles in determining the physicochemical properties of the obtained nanocomplexes. While none of the tested derivatives showed appreciable cytotoxicity, the type of acyl chain had a remarkable influence on the cell transfection capacity of TMC-ssON nanocomplexes with the derivatives based on stearic acid showing the best performance based on the results of in vitro assays using a model cell line expressing luciferase (HeLa/Luc705).


Asunto(s)
Quitosano/química , Nanopartículas/química , Oligonucleótidos/química , Supervivencia Celular/efectos de los fármacos , Quitosano/metabolismo , Quitosano/toxicidad , Dispersión Dinámica de Luz , Ácidos Grasos/química , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética , Nanopartículas/toxicidad , Oligonucleótidos/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Transfección
5.
Molecules ; 18(6): 6550-72, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23736790

RESUMEN

Carbohydrates and derivatives (such as glycolipids, glycoproteins) are of critical importance for cell structure, metabolism and functions. The effects of carbohydrate and lipid metabolic imbalances most often cause health disorders and diseases. In this study, new carbohydrate-based nanobioconjugates were designed and synthesized at room temperature using a single-step aqueous route combining chitosan and acyl-modified chitosan with fluorescent inorganic nanoparticles. N-palmitoyl chitosan (C-Pal) was prepared aiming at altering the lipophilic behavior of chitosan (CHI), but also retaining its reasonable water solubility for potential biomedical applications. CHI and C-Pal were used for producing biofunctionalized CdS quantum dots (QDs) as colloidal water dispersions. Fourier transform infrared spectroscopy (FTIR), thermal analysis (TG/DSC), surface contact angle (SCA), and degree of swelling (DS) in phosphate buffer were used to characterize the carbohydrates. Additionally, UV-Visible spectroscopy (UV-Vis), photoluminescence spectroscopy (PL), dynamic light scattering (DLS), scanning and transmission electron microscopy (SEM/TEM) were used to evaluate the precursors and nanobioconjugates produced. The FTIR spectra associated with the thermal analysis results have undoubtedly indicated the presence of N-palmitoyl groups "grafted" to the chitosan chain (C-Pal) which significantly altered its behavior towards water swelling and surface contact angle as compared to the unmodified chitosan. Furthermore, the results have evidenced that both CHI and C-Pal performed as capping ligands on nucleating and stabilizing colloidal CdS QDs with estimated average size below 3.5 nm and fluorescent activity in the visible range of the spectra. Therefore, an innovative "one-step" process was developed via room temperature aqueous colloidal chemistry for producing biofunctionalized quantum dots using water soluble carbohydrates tailored with amphiphilic behavior offering potential applications as fluorescent biomarkers in the investigation of glycoconjugates for the nutrition, biology, pharmaceutical, and medicine fields.


Asunto(s)
Quitosano/análogos & derivados , Quitosano/química , Puntos Cuánticos/química , Biopolímeros/química , Carbohidratos/química , Quitosano/síntesis química , Estructura Molecular , Tamaño de la Partícula , Puntos Cuánticos/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Termogravimetría
6.
RSC Adv ; 13(49): 34378-34390, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38024978

RESUMEN

Among almost 200 types of cancers, glioma is considered one of the most common forms of malignant tumors located in the central nervous system (CNS). Glioblastoma (GBM), one of the deadliest types of brain cancer, remains one of the challenges faced by oncologists. Thus, smartly designed nanomaterials biofunctionalized with polypeptides can offer disruptive strategies relying on the earliest possible diagnosis ("seeing is believing") combined with more efficient therapies for fighting cancer cells. To worsen this scenario, bacteria infections very often pose a serious challenge to cancer-immunodeficient patients under chemotherapy. Thus, in this research, we report for the first time the design and synthesis of novel nanoconjugates composed of photoluminescent ZnS quantum dots (ZnS QDs), which were directly surface biofunctionalized with epsilon-poly-l-lysine (εPL), acting as an amine-rich cell-penetrating peptide (CPP) and antimicrobial peptide agent (AMP). These nanoconjugates (named ZnS@CPP-AMP) were produced through a one-step facile, eco-friendly, and biocompatible colloidal aqueous process to be applied as a proof of concept as nanoprobes for bioimaging GBM cancer cells (U87-MG) associated with synergic antibacterial activity. They were characterized regarding their physicochemical and optical properties associated with the biological activity. The results demonstrated that chemically stable aqueous colloidal nanoconjugates were effectively formed, resembling core-shell (inorganic, ZnS, organic, εPL) nanostructures with positively surface-charged features due to the cationic nature of the amine-rich polypeptide. More importantly, they demonstrated photoluminescent activity, cytocompatibility in vitro, and no significant intracellular reactive oxygen species (ROS) generation. These ZnS@CPP-AMP nanocolloids behaved as fluorescent nanoprobes for bioimaging GBM cancer cells, where the polycationic nature of the εPL biomolecule may have enhanced the cellular uptake. Additionally, they displayed mild antibacterial growth inhibition due to electrostatic interactions with bacterial membranes. Thus, it can be envisioned that these novel photoluminescent colloidal nanoconjugates offer novel nanoplatforms that can be specifically targeted with biomolecules for bioimaging to diagnose highly lethal cancers, such as GBM, and as an adjuvant in antibacterial therapy.

7.
Int J Biol Macromol ; 231: 123363, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36690232

RESUMEN

The contamination and pollution of wastewater with a wide diversity of chemical, microbiological, and hazardous substances is a field of raising environmental concern. In this study, we developed, for the first time, new hybrid multifunctional nanoplexes composed of ZnS semiconductor quantum dots (ZnS QDs) chemically biofunctionalized with epsilon-poly-l-lysine (ɛPL) and coupled with magnetic iron oxide nanoparticles (MION, Fe3O4) stabilized by carboxymethylcellulose (CMC) for the photodegradation (ZnS) of organic molecules and antibacterial activity (ɛPL) with a potential of recovery by an external magnetic field (Fe3O4). These nanosystems, which were synthesized entirely through a green aqueous process, were comprehensively characterized regarding their physicochemical properties combined with spectroscopic and morphological features. The results demonstrated that supramolecular colloidal nanoplexes were formed owing to the strong cationic/anionic electrostatic interactions between the biomacromolecule capping ligands of the two nanoconjugates (i.e., polypeptide in ZnS@ɛPL and polysaccharide in Fe3O4@CMC). Moreover, these nanosystems showed photocatalytic degradation of methylene blue (MB) used as a model dye pollutant in water. Besides MB, methyl orange, congo red, and rhodamine dyes were also tested for selectivity investigation of the photodegradation by the nanoplexes. The antibacterial activity ascribed to the ɛPL biomolecule was confirmed against Gram-positive and Gram-negative bacteria, including drug-resistance field strains. Hence, it is envisioned that these novel green nanoplexes offer a new avenue of alternatives to be employed for reducing organic pollutants and inactivating pathogenic bacteria in water and wastewater treatment, benefiting from easy magnetic recovery.


Asunto(s)
Contaminantes Ambientales , Puntos Cuánticos , Purificación del Agua , Puntos Cuánticos/química , Colorantes/química , Carboximetilcelulosa de Sodio/química , Polilisina , Antibacterianos , Bacterias Gramnegativas , Bacterias Grampositivas , Nanopartículas Magnéticas de Óxido de Hierro , Agua
8.
Pharmaceutics ; 15(6)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37376150

RESUMEN

Glioblastoma (GBM) is the most common primary brain cancer in adults. Despite the remarkable advancements in recent years in the realm of cancer diagnosis and therapy, regrettably, GBM remains the most lethal form of brain cancer. In this view, the fascinating area of nanotechnology has emerged as an innovative strategy for developing novel nanomaterials for cancer nanomedicine, such as artificial enzymes, termed nanozymes, with intrinsic enzyme-like activities. Therefore, this study reports for the first time the design, synthesis, and extensive characterization of innovative colloidal nanostructures made of cobalt-doped iron oxide nanoparticles chemically stabilized by a carboxymethylcellulose capping ligand (i.e., Co-MION), creating a peroxidase-like (POD) nanozyme for biocatalytically killing GBM cancer cells. These nanoconjugates were produced using a strictly green aqueous process under mild conditions to create non-toxic bioengineered nanotherapeutics against GBM cells. The nanozyme (Co-MION) showed a magnetite inorganic crystalline core with a uniform spherical morphology (diameter, 2R = 6-7 nm) stabilized by the CMC biopolymer, producing a hydrodynamic diameter (HD) of 41-52 nm and a negatively charged surface (ZP~-50 mV). Thus, we created supramolecular water-dispersible colloidal nanostructures composed of an inorganic core (Cox-MION) and a surrounding biopolymer shell (CMC). The nanozymes confirmed the cytotoxicity evaluated by an MTT bioassay using a 2D culture in vitro of U87 brain cancer cells, which was concentration-dependent and boosted by increasing the cobalt-doping content in the nanosystems. Additionally, the results confirmed that the lethality of U87 brain cancer cells was predominantly caused by the production of toxic cell-damaging reactive oxygen species (ROS) through the in situ generation of hydroxyl radicals (·OH) by the peroxidase-like activity displayed by nanozymes. Thus, the nanozymes induced apoptosis (i.e., programmed cell death) and ferroptosis (i.e., lipid peroxidation) pathways by intracellular biocatalytic enzyme-like activity. More importantly, based on the 3D spheroids model, these nanozymes inhibited tumor growth and remarkably reduced the malignant tumor volume after the nanotherapeutic treatment (ΔV~40%). The kinetics of the anticancer activity of these novel nanotherapeutic agents decreased with the time of incubation of the GBM 3D models, indicating a similar trend commonly observed in tumor microenvironments (TMEs). Furthermore, the results demonstrated that the 2D in vitro model overestimated the relative efficiency of the anticancer agents (i.e., nanozymes and the DOX drug) compared to the 3D spheroid models. These findings are notable as they evidenced that the 3D spheroid model resembles more precisely the TME of "real" brain cancer tumors in patients than 2D cell cultures. Thus, based on our groundwork, 3D tumor spheroid models might be able to offer transitional systems between conventional 2D cell cultures and complex biological in vivo models for evaluating anticancer agents more precisely. These nanotherapeutics offer a wide avenue of opportunities to develop innovative nanomedicines for fighting against cancerous tumors and reducing the frequency of severe side effects in conventionally applied chemotherapy-based treatments.

9.
Polymers (Basel) ; 15(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38231902

RESUMEN

Diabetic foot ulcers (DFUs) are considered one of the most severe chronic complications of diabetes and can lead to amputation in severe cases. In addition, bacterial infections in diabetic chronic wounds aggravate this scenario by threatening human health. Wound dressings made of polymer matrices with embedded metal nanoparticles can inhibit microorganism growth and promote wound healing, although the current clinical treatments for diabetic chronic wounds remain unsatisfactory. In this view, this research reports the synthesis and characterization of innovative hybrid hydrogels made of carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) chemically crosslinked by citric acid (CA) functionalized with silver nanoparticles (AgNPs) generated in situ using an eco-friendly aqueous process. The results assessed through comprehensive in vitro and in vivo assays demonstrated that these hybrid polymer hydrogels functionalized with AgNPs possess physicochemical properties, cytocompatibility, hemocompatibility, bioadhesion, antibacterial activity, and biocompatibility suitable for wound dressings to support chronic wound healing process as well as preventing and treating bacterial infections. Hence, it can be envisioned that, with further research and development, these polymer-based hybrid nanoplatforms hold great potential as an important tool for creating a new generation of smart dressings for treating chronic diabetic wounds and opportunistic bacterial infections.

10.
Pharmaceutics ; 14(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36297660

RESUMEN

Glioblastoma remains the most lethal form of brain cancer, where hybrid nanomaterials biofunctionalized with polysaccharide peptides offer disruptive strategies relying on passive/active targeting and multimodal therapy for killing cancer cells. Thus, in this research, we report for the first time the rational design and synthesis of novel hybrid colloidal nanostructures composed of gold nanoparticles stabilized by trisodium citrate (AuNP@TSC) as the oxidase-like nanozyme, coupled with cobalt-doped superparamagnetic iron oxide nanoparticles stabilized by carboxymethylcellulose ligands (Co-MION@CMC) as the peroxidase-like nanozyme. They formed inorganic-inorganic dual-nanozyme systems functionalized by a carboxymethylcellulose biopolymer organic shell, which can trigger a biocatalytic cascade reaction in the cancer tumor microenvironment for the combination of magnetothermal-chemodynamic therapy. These nanoassemblies were produced through a green aqueous process under mild conditions and chemically biofunctionalized with integrin-targeting peptide (iRDG), creating bioengineered nanocarriers. The results demonstrated that the oxidase-like nanozyme (AuNP) was produced with a crystalline face-centered cubic nanostructure, spherical morphology (diameter = 16 ± 3 nm), zeta potential (ZP) of -50 ± 5 mV, and hydrodynamic diameter (DH) of 15 ± 1 nm. The peroxide-like nanostructure (POD, Co-MION@CMC) contained an inorganic crystalline core of magnetite and had a uniform spherical shape (2R = 7 ± 1 nm) which, summed to the contribution of the CMC shell, rendered a hydrodynamic diameter of 45 ± 4 nm and a negative surface charge (ZP = -41 ± 5 mV). Upon coupling both nanozymes, water-dispersible colloidal supramolecular vesicle-like organic-inorganic nanostructures were produced (AuNP//Co-MION@CMC, ZP = -45 ± 4 mV and DH = 28 ± 3 nm). They confirmed dual-nanozyme cascade biocatalytic activity targeted by polymer-peptide conjugates (AuNP//Co-MION@CMC_iRGD, ZP = -29 ± 3 mV and DH = 60 ± 4 nm) to kill brain cancer cells (i.e., bioenergy "starvation" by glucose deprivation and oxidative stress through reactive oxygen species generation), which was boosted by the magneto-hyperthermotherapy effect when submitted to the alternating magnetic field (i.e., induced local thermal stress by "nanoheaters"). This groundwork offers a wide avenue of opportunities to develop innovative theranostic nanoplatforms with multiple integrated functionalities for fighting cancer and reducing the harsh side effects of conventional chemotherapy.

11.
Int J Biol Macromol ; 210: 530-544, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35513094

RESUMEN

Among the most lethal forms of cancer, malignant brain tumors persist as one of the greatest challenges faced by oncologists, where nanotechnology-driven theranostics can play a critical role in developing novel polymer-based supramolecular nanoarchitectures with multifunctional and multi-modal characteristics to fight cancer. However, it is virtually a consensus that, besides the complexity of active delivering anticancer drugs by the nanocarriers to the tumor site, the current evaluation methods primarily relying on in vitro assays and in vivo animal models have been accounted for the low translational effectiveness to clinical applications. In this view, the chick chorioallantoic membrane (CAM) assay has been increasingly recognized as one of the best preclinical models to study the effects of anticancer drugs on the tumor microenvironment (TME). Thus, in this study, we designed, characterized, and developed novel hybrid nanostructures encompassing chemically functionalized carboxymethylcellulose (CMC) with mitochondria-targeting pro-apoptotic peptide (KLA) and cell-penetrating moiety (cysteine, CYS) with fluorescent inorganic semiconductor (Ag-In-S, AIS) for simultaneously bioimaging and inducing glioblastoma cancer cell (U-87 MG, GBM) death. The results demonstrated that the CMC-peptide macromolecules produced supramolecular vesicle-like nanostructures with aqueous colloidal stability suitable as nanocarriers for passive and active targeting of cancer tumors. The optical properties and physicochemical features of the nanoconjugates confirmed their suitability as photoluminescent nanoprobes for cell bioimaging and intracellular tracking. Moreover, the results in vitro demonstrated a notable killing activity towards GBM cells of cysteine-bearing CMC conjugates coupled with pro-apoptotic KLA peptides. More importantly, compared to doxorubicin (DOX), a model anticancer drug in chemotherapy that is highly toxic, these innovative nanohybrids nanoconjugates displayed higher lethality against U-87 MG cancer cells. In vivo CAM assays validated these findings where the nanohybrids demonstrated a significant reduction of GBM tumor progression (41% area) and evidenced an antiangiogenic activity. These results pave the way for developing polymer-based hybrid nanoarchitectonics applied as targeted multifunctional theranostics for simultaneous imaging and therapy against glioblastoma while possibly reducing the systemic toxicity and side-effects of conventional anticancer chemotherapeutic agents.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Puntos Cuánticos , Animales , Antineoplásicos/química , Neoplasias Encefálicas/tratamiento farmacológico , Carboximetilcelulosa de Sodio/química , Línea Celular Tumoral , Cisteína , Doxorrubicina/química , Glioblastoma/tratamiento farmacológico , Nanoconjugados/uso terapéutico , Polímeros/uso terapéutico , Puntos Cuánticos/química , Nanomedicina Teranóstica , Microambiente Tumoral
12.
Water Res ; 190: 116693, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33302040

RESUMEN

The fast growth of industrialization combined with the increasing population has led to an unparalleled demand for providing water in a safe, reliable, and cost-effective way, which has become one of the biggest challenges of the twenty-first century faced by global society. The application of nanotechnology in water treatment and pollution cleanup is a promising alternative in order to overcome the current limitations. In particular, the application of magnetic iron oxide nanoparticles (MIONs) for environmental remediation has currently received remarkable attention due to its unique combination of physicochemical and magnetic properties. Given the broadening use of these functional engineered nanomaterials, there is a growing concern about the adverse effects upon exposure of products and by-products to the environment. This makes vitally relevant the development of green chemistry in the synthesis processes combined with a trustworthy risk assessment of the nanotoxicity of MIONs as the scientific knowledge of the potential hazard of nanomaterials remains limited. This work provides comprehensive coverage of the recent progress on designing and developing iron oxide-based nanomaterials through a green synthesis strategy, including the use of benign solvents and ligands. Despite the limitations of nanotoxicity and environmental risks of iron oxide-based nanoparticles for the ecosystem, this critical review presents a contribution to the emerging knowledge concerning the theoretical and experimental studies on the toxicity of MIONs. Potential improvement of applications of advanced iron oxide-based hybrid nanostructures in water treatment and pollution control is also addressed in this review.


Asunto(s)
Nanoestructuras , Agua , Ecosistema , Compuestos Férricos , Fenómenos Magnéticos
13.
Nanotheranostics ; 5(2): 213-239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33614399

RESUMEN

Overview: Malignant brain tumors remain one of the greatest challenges faced by health professionals and scientists among the utmost lethal forms of cancer. Nanotheranostics can play a pivotal role in developing revolutionary nanoarchitectures with multifunctional and multimodal capabilities to fight cancer. Mitochondria are vital organelles to eukaryotic cells, which have been recognized as a significant target in cancer therapy where, by damaging the mitochondria, it will cause irreparable cell death or apoptosis. Methods: We designed and produced novel hybrid nanostructures comprising a fluorescent semiconductor core (AgInS2, AIS) and cysteine-modified carboxymethylcellulose (termed thiomer, CMC_Cys) conjugated with mitochondria-targeting peptides (KLA) forming a macromolecular shell for combining bioimaging and for inducing brain cancer cell (U-87 MG) death. Results: The optical and physicochemical properties of the nanoconjugates demonstrated suitability as photoluminescent nanostructures for cell bioimaging and intracellular tracking. Additionally, the results proved a remarkable killing activity towards glioblastoma cells of cysteine-bearing CMC conjugates coupled with KLA peptides through the half-maximal effective concentration values, approximately 70-fold higher compared to the conjugate analogs without Cys residues. Moreover, these thiomer-based pro-apoptotic drug nanoconjugates displayed higher lethality against U-87 MG cancer cells than doxorubicin, a model drug in chemotherapy, although extremely toxic. Remarkably, these peptidomimetic nanohybrids demonstrated a relative "protective effect" regarding healthy cells while maintaining high killing activity towards malignant brain cells. Conclusion: These findings pave the way for developing hybrid nanoarchitectures applied as targeted multifunctional platforms for simultaneous imaging and therapy against cancer while minimizing the high systemic toxicity and side-effects of conventional drugs in anticancer chemotherapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/patología , Colorantes Fluorescentes/química , Mitocondrias/efectos de los fármacos , Nanotecnología , Peptidomiméticos , Medicina de Precisión/métodos , Línea Celular Tumoral , Humanos
14.
Materials (Basel) ; 14(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34442946

RESUMEN

Herein, we validated novel functionalized hybrid semiconductor bioconjugates made of fluorescent quantum dots (QD) with the surface capped by chitosan (polysaccharide) and chemically modified with O-phospho-L-serine (OPS) that are biocompatible with different human cell sources. The conjugation with a directing signaling molecule (OPS) allows preferential accumulation in human bone mesenchymal stromal cells (HBMSC). The chitosan (Chi) shell with the fluorescent CdS core was characterized by spectroscopical (UV spectrophotometry and photoluminescence), by morphological techniques (Transmission Electron Microscopy (TEM)) and showed small size (ø 2.3 nm) and a stable photoluminescence emission band. The in vitro biocompatibility results were not dependent on the polysaccharide chain length (Chi with higher and lower molecular weight) but were remarkably affected by the surface modification (Chi or Chi-OPS). In addition, the efficiency of nanoparticles uptake by the cells was dependent on cells nature (human primary cells or cell lines) and tissue source (bone or skin) in the presence or absence of the OPS modification. The complex cellular uptake pathways involved in the cell labeling with the nanoparticles do not interfere on the normal cellular biology (adhesion and proliferation), osteogenic differentiation, and gene expression. The bone cells particles uptake evaluation showed a possible pathway by Caveolin-1 that regulates cell transduction in the membrane's Caveolae. Caveolae mediates non-specific endocytosis, and it is upregulated in HBMSC. The OPS-modified nanoparticles promoted an intense intracellular trafficking by the HBMSCs that showed late-osteoblast phenotype with an increase of extracellular matrix (ECM) mineralization (Alizarin red and Von Kossa staining for calcium phosphate crystals). In this work, the OPS modified bioconjugated QD proved to be a reliable and stable fluorescent bioprobe for cell imaging and targeting research that could also help in clarifying some cellular mechanisms of particles intracellular traffic through the cytoplasmic membrane and osteogenic differentiation induction. The in vitro HBMSC's biocompatibility responses indicated that the OPS-modified chitosan QDs have a prospective future in laboratory and pre-clinical applications such as bioimaging analysis and for ex-vivo cellular evaluation of biomedical implants.

15.
Int J Biol Macromol ; 182: 1091-1111, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33892028

RESUMEN

Acute or chronic brain injuries promote deaths and the life-long debilitating neurological status where, despite advances in therapeutic strategies, clinical outcome hardly achieves total patient recovery. In recent decades, brain tissue engineering emerged as an encouraging area of research for helping in damaged central nervous system (CNS) recovery. Polysaccharides are abundant naturally occurring biomacromolecules with a great potential enhancement of advanced technologies in brain tissue repair and regeneration (BTRR). Besides carrying rich biological information, polysaccharides can interact and communicate with biomolecules, including glycosaminoglycans present in cell membranes and many signaling moieties, growth factors, chemokines, and axon guidance molecules. This review includes a comprehensive investigation of the current progress on designing and developing polysaccharide-based soft matter biomaterials for BTRR. Although few interesting reviews concerning BTRR have been reported, this is the first report specifically focusing on covering multiple polysaccharides and polysaccharide-based functionalized biomacromolecules in this emerging and intriguing field of multidisciplinary knowledge. This review aims to cover the state of art challenges and prospects of this fascinating field while presenting the richness of possibilities of using these natural biomacromolecules for advanced biomaterials in prospective neural tissue engineering applications.


Asunto(s)
Materiales Biocompatibles/química , Hidrogeles/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Ingeniería Biomédica/métodos , Humanos
16.
Nanoscale Adv ; 3(4): 1029-1046, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36133299

RESUMEN

Magnetite nanoparticles are one of the most promising ferrofluids for hyperthermia applications due to the combination of unique physicochemical and magnetic properties. In this study, we designed and produced superparamagnetic ferrofluids composed of magnetite (Fe3O4, MION) and cobalt-doped magnetite (Co x -MION, x = 3, 5, and 10% mol of cobalt) nanoconjugates through an eco-friendly aqueous method using carboxymethylcellulose (CMC) as the biocompatible macromolecular ligand. The effect of the gradual increase of cobalt content in Fe3O4 nanocolloids was investigated in-depth using XRD, XRF, XPS, FTIR, DLS, zeta potential, EMR, and VSM analyses. Additionally, the cytotoxicity of these nanoconjugates and their ability to cause cancer cell death through heat induction were evaluated by MTT assays in vitro. The results demonstrated that the progressive substitution of Co in the magnetite host material significantly affected the magnetic anisotropy properties of the ferrofluids. Therefore, Co-doped ferrite (Co x Fe(3-x)O4) nanoconjugates enhanced the cell-killing activities in magnetic hyperthermia experiments under alternating magnetic field performed with human brain cancer cells (U87). On the other hand, the Co-doping process retained the pristine inverse spinel crystalline structure of MIONs, and it has not significantly altered the average nanoparticle size (ca.∼7.1 ± 1.6 nm). Thus, the incorporation of cobalt into magnetite-polymer nanostructures may constitute a smart strategy for tuning their magnetothermal capability towards cancer therapy by heat generation.

17.
Environ Technol ; 42(13): 2046-2066, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-31743650

RESUMEN

In this work, it was developed three-dimensional (3D) porous hydrogel sponges produced by the freeze-dried process using chitosan polymer functionalized by 11-mercaptoundecanoic acid (MUA). These chitosan-based sponges were used as cationic adsorbents for the removal of anionic methyl orange (MO) dye, simulating a model organic pollutant in aqueous medium. Moreover, these porous 3D constructs were also evaluated as 'antibiotic-free' antibacterial materials against gram-negative and gram-positive bacteria, Pseudomonas aeruginosa and Staphylococcus aureus, respectively, which were used as model pathogens possibly found in contaminated hospital discharges. These 3D hydrogels were comprehensively characterized through morphological methods such as scanning electron microscopy and X-ray micro-computed tomography techniques, combined with FTIR, Raman, and UV-visible spectroscopy analyses. Additionally, the surface area, the degree of swelling, and the adsorption profiles and kinetics of these scaffolds were systematically investigated. The chemically thiolated chitosan (CHI-MUA) hydrogels were successfully produced with a supramolecular polymeric network based on hydrogen bonds, disulfide bonds, and hydrophobic interactions that resulted in higher stability in aqueous medium than hydrogels of pristine chitosan. CHI-MUA exhibited sponge-like three-dimensional structures, with highly interconnected and hierarchical pore size distribution with high porosity and surface area. These architectural aspects of the 3D sponges favoured the high adsorption capacity for MO dye (∼388 mg.g-1) in water with removal efficiency greater than 90% for MO solutions (from 20 mg.L-1-1200 mg.L-1). The adsorption data followed a pseudo-second-order kinetic model and adsorption isotherm analysis and spectroscopy studies suggested a multilayer behaviour with coexistence of adsorbent-adsorbate and adsorbate-adsorbate interactions. Additionally, the in vitro evaluation of toxicity (MTT and LIVE-DEAD® assays) of 3D-sponges revealed a non-toxic response and preliminary suitability for bio-related applications. Importantly, the 3D-sponges composed of chitosan-thiolated derivative proved high antibacterial activity, specificity against P. aeruginosa (model hazardous pathogen), equivalent to conventional antibiotic drugs, while no lethality against S. aureus (reference commensal bacteria) was observed.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Adsorción , Antibacterianos/farmacología , Concentración de Iones de Hidrógeno , Cinética , Staphylococcus aureus , Microtomografía por Rayos X
18.
J Ocul Pharmacol Ther ; 36(6): 467-483, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32522096

RESUMEN

Purpose: Disturbances that affect the inside of the eyeball tend to be highly harmful since they compromise the homeostasis of this organ. Alongside this, the eyeball has several anatomical barriers that prevent the entry of substances. This way, diseases that affect the retina are among those that present greater difficulty in the treatment. In many cases, abnormal proliferation of blood vessels (neovascularization) occurs from the lower layers of the retina. This process damages its structure physiologically and anatomically, causing the rapid and irreversible loss of visual capacity. This work aims to develop nanosuspensions of quantum dots (QDs) conjugated to bevacizumab. Methods: Two types of QDs were produced by aqueous route, stabilized with chitosan conjugated to bevacizumab. The antiangiogenic activity was evaluated in the chorioallantoic membrane model, in which results indicated discrete activity at the doses tested. Samples were assessed for their biosafety in animals, after intravitreal administration, by means of electroretinography (ERG), intraocular pressure (IOP) measurement, histological, morphometric, and immunohistochemical evaluation. Results: No significant alterations were detected in ERG that suggests damage to retinal function by the samples. No significant changes in IOP were also detected. The histological sections did not show signs of acute inflammation, although there was evidence of late retinal damage. The immunohistochemical analysis did not detect any apoptotic bodies. Conclusion: Preliminary results suggest that QDs present potential applicability in ocular therapy, and it is necessary to better characterize their in vivo behavior and to optimize their dosage.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Bevacizumab/farmacología , Puntos Cuánticos/uso terapéutico , Retina/patología , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Bevacizumab/administración & dosificación , Bevacizumab/uso terapéutico , Membrana Corioalantoides/efectos de los fármacos , Contención de Riesgos Biológicos/normas , Electrorretinografía/métodos , Inmunohistoquímica/métodos , Presión Intraocular/efectos de los fármacos , Inyecciones Intravítreas , Masculino , Modelos Animales , Nanopartículas/química , Nanopartículas/uso terapéutico , Neovascularización Patológica/diagnóstico , Neovascularización Patológica/tratamiento farmacológico , Puntos Cuánticos/administración & dosificación , Puntos Cuánticos/química , Ratas , Degeneración Retiniana/diagnóstico , Degeneración Retiniana/metabolismo , Suspensiones/administración & dosificación , Suspensiones/química , Suspensiones/farmacocinética , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/farmacología , Factor A de Crecimiento Endotelial Vascular/inmunología
19.
Carbohydr Polym ; 247: 116703, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32829831

RESUMEN

Although the field of oncology nanomedicine has shown indisputable progress in recent years, cancer remains one of the most lethal diseases, where the early diagnosis plays a pivotal role in the patient's prognosis and therapy. Herein, we report for the first time, the synthesis of biocompatible nanostructures composed of Cu-In-S and Cu-In-S/ZnS nanoparticles functionalized with carboxymethylcellulose biopolymer produced by a green aqueous process. These inorganic-organic colloidal nanohybrids developed supramolecular architectures stabilized by chemical functional groups of the polysaccharide shell with the fluorescent semiconductor nanocrystal core, which were extensively characterized by several morphological and spectroscopical techniques. Moreover, these nanoconjugates were covalently bonded with folic acid via amide bonds and electrostatically conjugated with the anticancer drug, producing functionalized supramolecular nanostructures. They demonstrated nanotheranostics properties for bioimaging and drug delivery vectorization effective for killing breast cancer cells in vitro. These hybrids offer a new nanoplatform using fluorescent polysaccharide-drug conjugates for cancer theranostics applications.


Asunto(s)
Antineoplásicos/farmacología , Carboximetilcelulosa de Sodio/química , Colorantes Fluorescentes/química , Puntos Cuánticos/química , Sulfuros/química , Nanomedicina Teranóstica , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Compuestos de Zinc/química , Antineoplásicos/química , Cobre/química , Femenino , Humanos , Indio/química , Azufre/química , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas
20.
J Mater Chem B ; 8(32): 7166-7188, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32614035

RESUMEN

Despite the undeniable advances in recent decades, cancer remains one of the deadliest diseases of the current millennium, where the triple-negative breast cancer (TNBC) is very aggressive, extremely metastatic, and resistant to conventional chemotherapy. The nanotheranostic approach focusing on targeting membrane receptors often expressed at abnormal levels by cancer cells can be a strategic weapon for fighting malignant tumors. Herein, we introduced a novel "all-in-one nanosoldier" made of colloidal hybrid nanostructures, which were designed for simultaneously targeting, imaging, and killing TNBC cells. These nanohybrids comprised four distinct components: (a) superparamagnetic iron oxide nanoparticles, as bi-functional nanomaterials for inducing ferroptosis via inorganic nanozyme-mediated catalysis and magnetotherapy by hyperthermia treatment; (b) carboxymethyl cellulose biopolymer, as a water-soluble capping macromolecule; (c) folic acid, as the membranotopic vector for targeting folate receptors; (d) and doxorubicin (DOX) drug for chemotherapy. The results demonstrated that this novel strategy was highly effective for targeting and killing TNBC cells in vitro, expressing high levels of folate membrane-receptors. The results evidenced that three integrated mechanisms triggered the deaths of the cancer cells in vitro: (a) ferroptosis, by magnetite nanoparticles inducing a Fenton-like reaction; (b) magneto-hyperthermia effect by generating heat under an alternate magnetic field; and (c) chemotherapy, through the DOX intracellular release causing DNA dysfunction. This "all-in-one nanosoldier" strategy offers a vast realm of prospective alternatives for attacking cancer cells, combining multimodal therapy and the delivery of therapeutic agents to diseased sites and preserving healthy cells, which is one of the most critical clinical challenges faced in fighting drug-resistant breast cancers.


Asunto(s)
Antineoplásicos/química , Doxorrubicina/química , Colorantes Fluorescentes/química , Nanopartículas de Magnetita/química , Nanocápsulas/química , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/terapia , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Terapia Combinada , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Liberación de Fármacos , Receptores de Folato Anclados a GPI/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Humanos , Hipertermia Inducida/efectos adversos , Campos Magnéticos , Nanopartículas de Magnetita/uso terapéutico , Terapia Molecular Dirigida , Imagen Óptica , Estudios Prospectivos , Especies Reactivas de Oxígeno/metabolismo , Nanomedicina Teranóstica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda