Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 177(3): 622-638.e22, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31002797

RESUMEN

DNA repair has been hypothesized to be a longevity determinant, but the evidence for it is based largely on accelerated aging phenotypes of DNA repair mutants. Here, using a panel of 18 rodent species with diverse lifespans, we show that more robust DNA double-strand break (DSB) repair, but not nucleotide excision repair (NER), coevolves with longevity. Evolution of NER, unlike DSB, is shaped primarily by sunlight exposure. We further show that the capacity of the SIRT6 protein to promote DSB repair accounts for a major part of the variation in DSB repair efficacy between short- and long-lived species. We dissected the molecular differences between a weak (mouse) and a strong (beaver) SIRT6 protein and identified five amino acid residues that are fully responsible for their differential activities. Our findings demonstrate that DSB repair and SIRT6 have been optimized during the evolution of longevity, which provides new targets for anti-aging interventions.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Longevidad/genética , Sirtuinas/metabolismo , Secuencia de Aminoácidos , Animales , Peso Corporal , Roturas del ADN de Doble Cadena/efectos de la radiación , Evolución Molecular , Fibroblastos/citología , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Cinética , Masculino , Mutagénesis , Filogenia , Roedores/clasificación , Alineación de Secuencia , Sirtuinas/química , Sirtuinas/genética , Rayos Ultravioleta
2.
Biochemistry ; 63(4): 533-544, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38286790

RESUMEN

The oxidation of Met to methionine sulfoxide (MetSO) by oxidants such as hydrogen peroxide, hypochlorite, or peroxynitrite has profound effects on protein function. This modification can be reversed by methionine sulfoxide reductases (msr). In the context of pathogen infection, the reduction of oxidized proteins gains significance due to microbial oxidative damage generated by the immune system. For example, Mycobacterium tuberculosis (Mt) utilizes msrs (MtmsrA and MtmsrB) as part of the repair response to the host-induced oxidative stress. The absence of these enzymes makes Mycobacteria prone to increased susceptibility to cell death, pointing them out as potential therapeutic targets. This study provides a detailed characterization of the catalytic mechanism of MtmsrA using a comprehensive approach, including experimental techniques and theoretical methodologies. Confirming a ping-pong type enzymatic mechanism, we elucidate the catalytic parameters for sulfoxide and thioredoxin substrates (kcat/KM = 2656 ± 525 M-1 s-1 and 1.7 ± 0.8 × 106 M-1 s-1, respectively). Notably, the entropic nature of the activation process thermodynamics, representing ∼85% of the activation free energy at room temperature, is underscored. Furthermore, the current study questions the plausibility of a sulfurane intermediate, which may be a transition-state-like structure, suggesting the involvement of a conserved histidine residue as an acid-base catalyst in the MetSO reduction mechanism. This mechanistic insight not only advances our understanding of Mt antioxidant enzymes but also holds implications for future drug discovery and biotechnological applications.


Asunto(s)
Metionina Sulfóxido Reductasas , Mycobacterium tuberculosis , Metionina Sulfóxido Reductasas/metabolismo , Mycobacterium tuberculosis/metabolismo , Oxidación-Reducción , Catálisis , Estrés Oxidativo , Metionina/metabolismo
3.
J Biol Chem ; 294(9): 3235-3248, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30593501

RESUMEN

Trypanosomes are flagellated protozoan parasites (kinetoplastids) that have a unique redox metabolism based on the small dithiol trypanothione (T(SH)2). Although GSH may still play a biological role in trypanosomatid parasites beyond being a building block of T(SH)2, most of its functions are replaced by T(SH)2 in these organisms. Consequently, trypanosomes have several enzymes adapted to using T(SH)2 instead of GSH, including the glutaredoxins (Grxs). However, the mechanistic basis of Grx specificity for T(SH)2 is unknown. Here, we combined fast-kinetic and biophysical approaches, including NMR, MS, and fluorescent tagging, to study the redox function of Grx1, the only cytosolic redox-active Grx in trypanosomes. We observed that Grx1 reduces GSH-containing disulfides (including oxidized trypanothione) in very fast reactions (k > 5 × 105 m-1 s-1). We also noted that disulfides without a GSH are much slower oxidants, suggesting a strongly selective binding of the GSH molecule. Not surprisingly, oxidized Grx1 was also reduced very fast by T(SH)2 (4.8 × 106 m-1 s-1); however, GSH-mediated reduction was extremely slow (39 m-1 s-1). This kinetic selectivity in the reduction step of the catalytic cycle suggests that Grx1 uses preferentially a dithiol mechanism, forming a disulfide on the active site during the oxidative half of the catalytic cycle and then being rapidly reduced by T(SH)2 in the reductive half. Thus, the reduction of glutathionylated substrates avoids GSSG accumulation in an organism lacking GSH reductase. These findings suggest that Grx1 has played an important adaptive role during the rewiring of the thiol-redox metabolism of kinetoplastids.


Asunto(s)
Evolución Biológica , Glutarredoxinas/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Trypanosoma/metabolismo , Animales , Dominio Catalítico , Glutarredoxinas/química , Humanos , Cinética , Oxidación-Reducción
4.
Chemistry ; 26(65): 14838-14843, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32501570

RESUMEN

Oxidation of protein methionines to methionine-sulfoxides (MetOx) is associated with several age-related diseases. In healthy cells, MetOx is reduced to methionine by two families of conserved methionine sulfoxide reductase enzymes, MSRA and MSRB that specifically target the S- or R-diastereoisomers of methionine-sulfoxides, respectively. To directly interrogate MSRA and MSRB functions in cellular settings, we developed an NMR-based biosensor that we call CarMetOx to simultaneously measure both enzyme activities in single reaction setups. We demonstrate the suitability of our strategy to delineate MSR functions in complex biological environments, including cell lysates and live zebrafish embryos. Thereby, we establish differences in substrate specificities between prokaryotic and eukaryotic MSRs and introduce CarMetOx as a highly sensitive tool for studying therapeutic targets of oxidative stress-related human diseases and redox regulated signaling pathways.


Asunto(s)
Técnicas Biosensibles , Humanos , Metionina , Metionina Sulfóxido Reductasas/metabolismo , Oxidación-Reducción , Especificidad por Sustrato
5.
Appl Microbiol Biotechnol ; 104(22): 9693-9706, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32997203

RESUMEN

Microbial production of antibodies offers the promise of cheap, fast, and efficient production of antibodies at an industrial scale. Limiting this capacity in prokaryotes is the absence of the post-translational machinery, present in dedicated antibody producing eukaryotic cell lines, such as B cells. There has been few and limited success in producing full-length, correctly folded, and assembled IgG in the cytoplasm of prokaryotic cell lines. One such success was achieved by utilizing the genetically engineered Escherichia coli strain SHuffle with an oxidative cytoplasm. Due to the genetic disruption of reductive pathways, SHuffle cells are under constant oxidative stress, including increased levels of hydrogen peroxide (H2O2). The oxidizing capacity of H2O2 was linked to improved disulfide bond formation, by expressing a fusion of two endoplasmic reticulum-resident proteins, the thiol peroxidase GPx7 and the protein disulfide isomerase, PDI. In concert, these proteins mediate disulfide transfer from H2O2 to target proteins via PDI-Gpx7 fusions. The potential of this new strain was tested with Humira, a blockbuster antibody usually produced in eukaryotic cells. Expression results demonstrate that the new engineered SHuffle strain (SHuffle2) could produce Humira IgG four-fold better than the parental strain, both in shake-flask and in high-density fermentation. These preliminary studies guide the field in genetically engineering eukaryotic redox pathways in prokaryotes for the production of complex macromolecules. KEY POINTS: • A eukaryotic redox pathway was engineered into the E. coli strain SHuffle in order to improve the yield of the blockbuster antibody Humira. • The best peroxidase-PDI fusion was selected using bioinformatics and in vivo studies. • Improved yields of Humira were demonstrated at shake-flask and high-density fermenters.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Adalimumab , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glutatión Peroxidasa , Humanos , Peróxido de Hidrógeno , Peroxidasas , Proteína Disulfuro Isomerasas/genética
7.
Mol Biol Evol ; 33(9): 2441-53, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27413050

RESUMEN

Selenocysteine (Sec) is the 21st amino acid in the genetic code, inserted in response to UGA codons with the help of RNA structures, the SEC Insertion Sequence (SECIS) elements. The three domains of life feature distinct strategies for Sec insertion in proteins and its utilization. While bacteria and archaea possess similar sets of selenoproteins, Sec biosynthesis is more similar among archaea and eukaryotes. However, SECIS elements are completely different in the three domains of life. Here, we analyze the archaeon Lokiarchaeota that resolves the relationships among Sec insertion systems. This organism has selenoproteins representing five protein families, three of which have multiple Sec residues. Remarkably, these archaeal selenoprotein genes possess conserved RNA structures that strongly resemble the eukaryotic SECIS element, including key eukaryotic protein-binding sites. These structures also share similarity with the SECIS element in archaeal selenoprotein VhuD, suggesting a relation of direct descent. These results identify Lokiarchaeota as an intermediate form between the archaeal and eukaryotic Sec-encoding systems and clarify the evolution of the Sec insertion system.


Asunto(s)
Archaea/genética , Codón de Terminación , Eucariontes/genética , Selenocisteína/genética , Regiones no Traducidas 3' , Secuencia de Aminoácidos , Archaea/metabolismo , Secuencia de Bases , Evolución Biológica , Eucariontes/metabolismo , Células Eucariotas/metabolismo , Código Genético , Unión Proteica , Selenocisteína/metabolismo , Selenoproteínas/genética
8.
Arch Biochem Biophys ; 590: 101-108, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26612102

RESUMEN

Peroxiredoxins are cys-based peroxidases that function in peroxide detoxification and H2O2-induced signaling. Human Prx2 is a typical 2-Cys Prx arranged as pentamers of head-to-tail homodimers. During the catalytic mechanism, the active-site cysteine (CP) cycles between reduced, sulfenic and disulfide state involving conformational as well as oligomeric changes. Several post-translational modifications were shown to affect Prx activity, in particular CP overoxidation which leads to inactivation. We have recently reported that nitration of Prx2, a post-translational modification on non-catalytic tyrosines, unexpectedly increases its peroxidase activity and resistance to overoxidation. To elucidate the cross-talk between this post-translational modification and the enzyme catalysis, we investigated the structural changes of Prx2 after nitration. Analytical ultracentrifugation, UV absorption, circular dichroism, steady-state and time-resolved fluorescence were used to connect catalytically relevant redox changes with tyrosine nitration. Our results show that the reduced nitrated Prx2 structurally resembles the disulfide-oxidized native form of the enzyme favoring a locally unfolded conformation that facilitates disulfide formation. These results provide structural basis for the kinetic analysis previously reported, the observed increase in activity and the resistance to overoxidation of the peroxynitrite-treated enzyme.


Asunto(s)
Disulfuros/química , Proteínas de Homeodominio/química , Proteínas de Homeodominio/ultraestructura , Nitrocompuestos/química , Ácido Peroxinitroso/química , Sitios de Unión , Oxidación-Reducción , Unión Proteica , Conformación Proteica
9.
J Biol Chem ; 289(22): 15536-43, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24719319

RESUMEN

Peroxiredoxins (Prx) are efficient thiol-dependent peroxidases and key players in the mechanism of H2O2-induced redox signaling. Any structural change that could affect their redox state, oligomeric structure, and/or interaction with other proteins could have a significant impact on the cascade of signaling events. Several post-translational modifications have been reported to modulate Prx activity. One of these, overoxidation of the peroxidatic cysteine to the sulfinic derivative, inactivates the enzyme and has been proposed as a mechanism of H2O2 accumulation in redox signaling (the floodgate hypothesis). Nitration of Prx has been reported in vitro as well as in vivo; in particular, nitrated Prx2 was identified in brains of Alzheimer disease patients. In this work we characterize Prx2 tyrosine nitration, a post-translational modification on a noncatalytic residue that increases its peroxidase activity and its resistance to overoxidation. Mass spectrometry analysis revealed that treatment of disulfide-oxidized Prx2 with excess peroxynitrite renders mainly mononitrated and dinitrated species. Tyrosine 193 of the YF motif at the C terminus, associated with the susceptibility toward overoxidation of eukaryotic Prx, was identified as nitrated and is most likely responsible for the protection of the peroxidatic cysteine against oxidative inactivation. Kinetic analyses suggest that tyrosine nitration facilitates the intermolecular disulfide formation, transforming a sensitive Prx into a robust one. Thus, tyrosine nitration appears as another mechanism to modulate these enzymes in the complex network of redox signaling.


Asunto(s)
Eritrocitos/enzimología , Proteínas de Homeodominio/metabolismo , Nitrógeno/metabolismo , Estrés Oxidativo/fisiología , Ácido Peroxinitroso/metabolismo , Animales , Dominio Catalítico , Echinococcus granulosus/enzimología , Activación Enzimática/fisiología , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Homeodominio/genética , Humanos , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Procesamiento Proteico-Postraduccional/fisiología , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal/fisiología , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Tirosina/metabolismo
10.
Biochemistry ; 53(38): 6113-25, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25184942

RESUMEN

Human peroxiredoxin-5 (PRDX5) is a thiol peroxidase that reduces H2O2 10(5) times faster than free cysteine. To assess the influence of two conserved residues on the reactivity of the critical cysteine (C47), we determined the reaction rate constants of PRDX5, wild type (WT), T44V and R127Q with one substrate electrophile (H2O2) and a nonspecific electrophile (monobromobimane). We also studied the corresponding reactions of low molecular weight (LMW) thiolates in order to construct a framework against which we could compare our proteins. To obtain a detailed analysis of the structural and energetic changes involved in the reaction between WT PRDX5 and H2O2, we performed ONIOM quantum mechanics/molecular mechanics (QM/MM) calculations with a QM region including 60 atoms of substrate and active site described by the B3LYP density functional and the 6-31+G(d,p) basis set; the rest of the protein was included in the MM region. Brønsted correlations reveal that the absence of T44 can increase the general nucleophilicity of the C47 but decreases the specific reactivity toward H2O2 by a factor of 10(3). The R127Q mutation causes C47 to behave like a LMW thiolate in the two studied reactions. QM/MM results with WT PRDX5 showed that hydrogen bonds in the active site are the cornerstone of two effects that make catalysis possible: the enhancement of thiolate nucleophilicity upon substrate ingress and the stabilization of the transition state. In both effects, T44 has a central role. These effects occur in a precise temporal sequence that ensures that the selective nucleophilicity of C47 is available only for peroxide substrates.


Asunto(s)
Cisteína/química , Peroxirredoxinas/metabolismo , Dominio Catalítico , Escherichia coli , Regulación de la Expresión Génica , Modelos Moleculares , Peroxirredoxinas/química , Conformación Proteica
11.
Biochim Biophys Acta ; 1830(5): 3199-216, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23396001

RESUMEN

BACKGROUND: Trypanosomatids are early-diverging eukaryotes devoid of the major disulfide reductases - glutathione reductase and thioredoxin reductase - that control thiol-redox homeostasis in most organisms. These protozoans have evolved a unique thiol-redox system centered on trypanothione, a bis-glutathionyl conjugate of spermidine. Notably, the trypanothione system is capable to sustain several cellular functions mediated by thiol-dependent (redox) processes. SCOPE OF REVIEW: This review provides a summary of some historical and evolutionary aspects related to the discovery and appearance of trypanothione in trypanosomatids. It also addresses trypanothione's biosynthesis, physicochemical properties and reactivity towards biologically-relevant oxidants as well as its participation as a cofactor for metal binding. In addition, the role of the second most abundant thiol of trypanosomatids, glutathione, is revisited in light of the putative glutathione-dependent activities identified in these organisms. MAJOR CONCLUSIONS: Based on biochemical and genome data, the occurrence of a thiol-redox system that is strictly dependent on trypanothione appears to be a feature unique to the order Kinetoplastida. The properties of trypanothione, a dithiol, are the basis for its unique reactivity towards a wide diversity of oxidized and/or electrophilic moieties in proteins and low molecular weight compounds from endogenous or exogenous sources. Novel functions have emerged for trypanothione as a potential cofactor in iron metabolism. GENERAL SIGNIFICANCE: The minimalist thiol-redox system, developed by trypanosomatids, is an example of metabolic fitness driven by the remarkable physicochemical properties of a glutathione derivative. From a pharmacological point of view, such specialization is the Achilles' heel of these ancient and deadly parasites. This article is part of a Special Issue entitled Cellular functions of glutathione.


Asunto(s)
Glutatión/análogos & derivados , Glutatión/metabolismo , Espermidina/análogos & derivados , Trypanosomatina/metabolismo , Animales , Humanos , Oxidantes/metabolismo , Oxidación-Reducción , Espermidina/metabolismo , Compuestos de Sulfhidrilo/metabolismo
12.
Anal Biochem ; 435(1): 74-82, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23296042

RESUMEN

A method based on the differential reactivity of thiol and thiolate with monobromobimane (mBBr) has been developed to measure nucleophilicity and acidity of protein and low-molecular-weight thiols. Nucleophilicity of the thiolate is measured as the pH-independent second-order rate constant of its reaction with mBBr. The ionization constants of the thiols are obtained through the pH dependence of either second-order rate constant or initial rate of reaction. For readily available thiols, the apparent second-order rate constant is measured at different pHs and then plotted and fitted to an appropriate pH function describing the observed number of ionization equilibria. For less available thiols, such as protein thiols, the initial rate of reaction is determined in a wide range of pHs and fitted to the appropriate pH function. The method presented here shows excellent sensitivity, allowing the use of nanomolar concentrations of reagents. The method is suitable for scaling and high-throughput screening. Example determinations of nucleophilicity and pK(a) are presented for captopril and cysteine as low-molecular-weight thiols and for human peroxiredoxin 5 and Trypanosoma brucei monothiol glutaredoxin 1 as protein thiols.


Asunto(s)
Compuestos Bicíclicos con Puentes/química , Compuestos de Sulfhidrilo/química , Cisteína/química , Fluorescencia , Glutarredoxinas/química , Humanos , Concentración de Iones de Hidrógeno , Peroxirredoxinas/química , Trypanosoma brucei brucei/enzimología
13.
Free Radic Biol Med ; 192: 63-76, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36122644

RESUMEN

Selenophosphate synthetases use selenium and ATP to synthesize selenophosphate. This is required for biological utilization of selenium, most notably for the synthesis of the non-canonical amino acid selenocysteine (Sec). Therefore, selenophosphate synthetases underlie all functions of selenoproteins, which include redox homeostasis, protein quality control, hormone regulation, metabolism, and many others. This protein family comprises two groups, SelD/SPS2 and SPS1. The SelD/SPS2 group represent true selenophosphate synthetases, enzymes central to selenium metabolism which are present in all Sec-utilizing organisms across the tree of life. Notably, many SelD/SPS2 proteins contain Sec as catalytic residue in their N-terminal flexible selenium-binding loop, while others replace it with cysteine (Cys). The SPS1 group comprises proteins originated through gene duplications of SelD/SPS2 in metazoa in which the Sec/Cys-dependent catalysis was disrupted. SPS1 proteins do not synthesize selenophosphate and are not required for Sec synthesis. They have essential regulatory functions related to redox homeostasis and pyridoxal phosphate, which affect signaling pathways for growth and differentiation. In this review, we summarize the knowledge about the selenophosphate synthetase family acquired through decades of research, encompassing their structure, mechanism, function, and evolution.


Asunto(s)
Selenio , Selenocisteína , Adenosina Trifosfato/metabolismo , Cisteína , Hormonas , Ligasas , Fosfatos , Fosfotransferasas/genética , Fosfato de Piridoxal , Selenio/metabolismo , Compuestos de Selenio , Selenocisteína/metabolismo , Selenoproteínas/metabolismo
14.
Free Radic Biol Med ; 191: 228-240, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36084791

RESUMEN

Methionine (Met) can be oxidized to methionine sulfoxide (MetO), which exist as R- and S-diastereomers. Present in all three domains of life, methionine sulfoxide reductases (MSR) are the enzymes that reduce MetO back to Met. Most characterized among them are MSRA and MSRB, which are strictly stereospecific for the S- and R-diastereomers of MetO, respectively. While the majority of MSRs use a catalytic Cys to reduce their substrates, some employ selenocysteine. This is the case of mammalian MSRB1, which was initially discovered as selenoprotein SELR or SELX and later was found to exhibit an MSRB activity. Genomic analyses demonstrated its occurrence in most animal lineages, and biochemical and structural analyses uncovered its catalytic mechanism. The use of transgenic mice and mammalian cell culture revealed its physiological importance in the protection against oxidative stress, maintenance of neuronal cells, cognition, cancer cell proliferation, and the immune response. Coincident with the discovery of Met oxidizing MICAL enzymes, recent findings of MSRB1 regulating the innate immunity response through reversible stereospecific Met-R-oxidation of cytoskeletal actin opened up new avenues for biological importance of MSRB1 and its role in disease. In this review, we discuss the current state of research on MSRB1, compare it with other animal Msrs, and offer a perspective on further understanding of biological functions of this selenoprotein.


Asunto(s)
Metionina Sulfóxido Reductasas , Selenocisteína , Actinas , Animales , Humanos , Mamíferos , Metionina/química , Metionina Sulfóxido Reductasas/genética , Ratones , Ratones Transgénicos , Selenoproteínas/genética
15.
Chem Res Toxicol ; 24(4): 434-50, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21391663

RESUMEN

Protein thiol reactivity generally involves the nucleophilic attack of the thiolate on an electrophile. A low pK(a) means higher availability of the thiolate at neutral pH but often a lower nucleophilicity. Protein structural factors contribute to increasing the reactivity of the thiol in very specific reactions, but these factors do not provide an indiscriminate augmentation in general reactivity. Notably, reduction of hydroperoxides by the catalytic cysteine of peroxiredoxins can achieve extraordinary reaction rates relative to free cysteine. The discussion of this catalytic efficiency has centered in the stabilization of the thiolate as a way to increase nucleophilicity. Such stabilization originates from electrostatic and polar interactions of the catalytic cysteine with the protein environment. We propose that the set of interactions is better described as a means of stabilizing the anionic transition state of the reaction. The enhanced acidity of the critical cysteine is concurrent but not the cause of catalytic efficiency. Protein stabilization of the transition state is achieved by (a) a relatively static charge distribution around the cysteine that includes a conserved arginine and the N-terminus of an α-helix providing a cationic environment that stabilizes the reacting thiolate, the transition state, and also the anionic leaving group; (b) a dynamic set of polar interactions that stabilize the thiolate in the resting enzyme and contribute to restraining its reactivity in the absence of substrate; but upon peroxide binding these active/binding site groups switch interactions from thiolate to peroxide oxygens, simultaneously increasing the nucleophilicity of the attacking sulfur and facilitating the correct positioning of the substrate. The switching of polar interaction provides further acceleration and, importantly, confers specificity to the thiol reactivity. The extraordinary thiol reactivity and specificity toward H(2)O(2) combined with their ubiquity and abundance place peroxiredoxins, along with glutathione peroxidases, as obligate hydroperoxide cellular sensors.


Asunto(s)
Peróxido de Hidrógeno/química , Peroxirredoxinas/química , Compuestos de Sulfhidrilo/química , Sitios de Unión , Biocatálisis , Dominio Catalítico , Cisteína/química , Peróxido de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción , Peroxirredoxinas/metabolismo , Estructura Terciaria de Proteína
16.
J Clin Invest ; 130(9): 4663-4678, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32749237

RESUMEN

Oxidant stress can contribute to health and disease. Here we show that invertebrates and vertebrates share a common stereospecific redox pathway that protects against pathological responses to stress, at the cost of reduced physiological performance, by constraining Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity. MICAL1, a methionine monooxygenase thought to exclusively target actin, and MSRB, a methionine reductase, control the stereospecific redox status of M308, a highly conserved residue in the calmodulin-binding (CaM-binding) domain of CaMKII. Oxidized or mutant M308 (M308V) decreased CaM binding and CaMKII activity, while absence of MICAL1 in mice caused cardiac arrhythmias and premature death due to CaMKII hyperactivation. Mimicking the effects of M308 oxidation decreased fight-or-flight responses in mice, strikingly impaired heart function in Drosophila melanogaster, and caused disease protection in human induced pluripotent stem cell-derived cardiomyocytes with catecholaminergic polymorphic ventricular tachycardia, a CaMKII-sensitive genetic arrhythmia syndrome. Our studies identify a stereospecific redox pathway that regulates cardiac physiological and pathological responses to stress across species.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Microfilamentos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Mutación Missense , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Taquicardia Ventricular/enzimología , Sustitución de Aminoácidos , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Oxigenasas de Función Mixta/genética , Miocardio/patología , Miocitos Cardíacos/patología , Oxidación-Reducción , Taquicardia Ventricular/genética , Taquicardia Ventricular/patología
17.
Biochemistry ; 48(40): 9416-26, 2009 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-19737009

RESUMEN

Drug resistance and virulence of Mycobacterium tuberculosis are partially related to the pathogen's antioxidant systems. Peroxide detoxification in this bacterium is achieved by the heme-containing catalase peroxidase and different two-cysteine peroxiredoxins. M. tuberculosis genome also codifies for a putative one-cysteine peroxiredoxin, alkyl hydroperoxide reductase E (MtAhpE). Its expression was previously demonstrated at a transcriptional level, and the crystallographic structure of the recombinant protein was resolved under reduced and oxidized states. Herein, we report that the conformation of MtAhpE changed depending on its single cysteine redox state, as reflected by different tryptophan fluorescence properties and changes in quaternary structure. Dynamics of fluorescence changes, complemented by competition kinetic assays, were used to perform protein functional studies. MtAhpE reduced peroxynitrite 2 orders of magnitude faster than hydrogen peroxide (1.9 x 10(7) M(-1) s(-1) vs 8.2 x 10(4) M(-1) s(-1) at pH 7.4 and 25 degrees C, respectively). The latter also caused cysteine overoxidation to sulfinic acid, but at much slower rate constant (40 M(-1) s(-1)). The pK(a) of the thiol in the reduced enzyme was 5.2, more than one unit lower than that of the sulfenic acid in the oxidized enzyme. The pH profile of hydrogen peroxide-mediated thiol and sulfenic acid oxidations indicated thiolate and sulfenate as the reacting species. The formation of sulfenic acid as well as the catalytic peroxidase activity of MtAhpE was demonstrated using the artificial reducing substrate thionitrobenzoate. Taken together, our results indicate that MtAhpE is a relevant component in the antioxidant repertoire of M. tuberculosis probably involved in peroxide and specially peroxynitrite detoxification.


Asunto(s)
Cisteína/química , Mycobacterium tuberculosis/enzimología , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Ácidos Sulfénicos/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Cinética , Mycobacterium tuberculosis/patogenicidad , Oxidación-Reducción , Peróxidos/antagonistas & inhibidores , Peróxidos/metabolismo , Peróxidos/toxicidad , Ácido Peroxinitroso/metabolismo , Conformación Proteica , Especificidad por Sustrato , Ácidos Sulfénicos/química , Compuestos de Sulfhidrilo/química , Termodinámica
18.
Arch Biochem Biophys ; 484(2): 146-54, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19061854

RESUMEN

Peroxiredoxin 2 (Prx2) is a 2-Cys peroxiredoxin extremely abundant in the erythrocyte. The peroxidase activity was studied in a steady-state approach yielding an apparent K(M) of 2.4 microM for human thioredoxin and a very low K(M) for H2O2 (0.7 microM). Rate constants for the reaction of peroxidatic cysteine with the peroxide substrate, H2O2 or peroxynitrite, were determined by competition kinetics, k(2) = 1.0 x 10(8) and 1.4 x 10(7) M(-1) s(-1) at 25 degrees C and pH 7.4, respectively. Excess of both oxidants inactivated the enzyme by overoxidation and also tyrosine nitration and dityrosine were observed with peroxynitrite treatment. Prx2 associates into decamers (5 homodimers) and we estimated a dissociation constant K(d) < 10(-23) M(4) which confirms the enzyme exists as a decamer in vivo. Our kinetic results indicate Prx2 is a key antioxidant enzyme for the erythrocyte and reveal red blood cells as active oxidant scrubbers in the bloodstream.


Asunto(s)
Eritrocitos/enzimología , Peroxirredoxinas/sangre , Animales , Catálisis , Cromatografía en Gel , Dimerización , Humanos , Peróxido de Hidrógeno/sangre , Peróxido de Hidrógeno/metabolismo , Cinética , Mamíferos , NADP/sangre , Oxidantes/sangre , Oxidación-Reducción , Oxidorreductasas/sangre , Peroxidasas/sangre , Peroxirredoxinas/química , Peroxirredoxinas/aislamiento & purificación , Tiorredoxinas/sangre
19.
EcoSal Plus ; 8(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30761987

RESUMEN

The formation of disulfide bonds is critical to the folding of many extracytoplasmic proteins in all domains of life. With the discovery in the early 1990s that disulfide bond formation is catalyzed by enzymes, the field of oxidative folding of proteins was born. Escherichia coli played a central role as a model organism for the elucidation of the disulfide bond-forming machinery. Since then, many of the enzymatic players and their mechanisms of forming, breaking, and shuffling disulfide bonds have become understood in greater detail. This article summarizes the discoveries of the past 3 decades, focusing on disulfide bond formation in the periplasm of the model prokaryotic host E. coli.


Asunto(s)
Disulfuros , Escherichia coli/metabolismo , Periplasma/metabolismo , Proteínas Periplasmáticas/metabolismo , Catálisis , Escherichia coli/citología , Proteínas de Escherichia coli/metabolismo , Oxidación-Reducción , Proteína Disulfuro Isomerasas , Pliegue de Proteína
20.
Microbiol Resour Announc ; 8(28)2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296691

RESUMEN

In this announcement, we present the complete annotated genome sequence of an Escherichia coli MC4100 mutant strain, BE104. This strain has several methionine sulfoxide reductase gene deletions, making it ideal for studying enzymes that alter the redox state of methionine.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda