Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Publication year range
1.
Materials (Basel) ; 17(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38399201

RESUMEN

The physical properties of Ti6Al4V powder affect the spreadability of the powder and uniformity of the powder bed, which had a great impact on the performance of built parts made by powder bed fusion technology. Micro-computed tomography is a well-established technique used to analyze the non-destructivity of the objects' interior. Ti6Al4V powders were scanned with micro-CT to show the internal and external information of all the particles. The morphology, particle size distribution, hollow particle ratio, density, inclusion, and specific surface area of the powder samples were quantitatively characterized, and the relationship of flowability with these physical properties was analyzed in this work. The research results of this article showed that micro-CT is an effective way to characterize these items, and can be developed as a standard method of powder physical properties in the future.

2.
Materials (Basel) ; 17(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38255620

RESUMEN

Selective laser melting (SLM) has attracted increasing attention all over the world. As an important parameter, hatch spacing, which is the distance between scan lines, however, still needs a more systematic study. In this paper, the relationship between hatch spacing and mechanical properties, including microhardness, wear resistance, and porous density, was studied. The testing results revealed that when hatch spacing decreased, the overlapping rate increased which resulted in an increase in the convection in the molten pool. It led to the formation of pores in the molten pool. However, when hatch spacing was too large, the overlapping zone decreased, while the strength between each welding line was not strong enough. It caused a decrease in the quality of printed parts. Combined with the testing results gained in this work, it can be seen that a 0.06 mm hatch spacing was considered as a relatively optimal condition for part formation under 0.05 µm. Comparison of the morphology of the samples printed under different hatch spacing also confirmed the phenomenon observed here.

3.
Materials (Basel) ; 16(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37444963

RESUMEN

A systematic study was conducted to investigate the distinct mechanisms involved in the formation of the inner surfaces of cylindrical and parallelepipedic-shaped structures. The surface roughness, flatness, and sinking distance were used as key indices to measure the quality of overhanging surfaces, while the surface flatness and roughness were used to evaluate the quality of the side and bottom surfaces of the inner hole. The inner surface morphology was observed using a scanning electron microscope and a white light interferometer. The test results show that the quality of the overhanging surface had a significant impact on the quality of the parallelepipedic-shaped inner hole. In contrast, the cylindrical-shaped inner hole had a shorter but more uniformly distributed overhanging surface, resulting in a different behavior of the overhanging and side surface quality. An improved model of the overhanging surface was established by combining all of the above results and comparing them with the traditional Euler Bernoulli beam model. The factors affecting the quality of the overhanging surface were analyzed, and measures for improving the quality of the overhanging surface during the SLM manufacturing process were proposed.

4.
ACS Biomater Sci Eng ; 7(4): 1663-1672, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33682413

RESUMEN

An irregular porous structure plays a major role in bone tissue engineering, and it is more suitable for bone tissue growth than a regular porous structure. The response surface method was used to establish a relationship between the average pore size and the design parameters. The technology of selective laser melting was utilized to fabricate the porous Ti-6Al-4V scaffolds with an irregularity of (0.4) and porosities of (70, 80, and 90%) designed using the Voronoi-tessellation method. Compression tests of porous scaffolds showed an elastic modulus range of 0.84-1.97 GPa and an ultimate strength ranging within 21.0-99.1 MPa. The elastic modulus was mainly influenced by the porosity and heat-treatment process. Furthermore, the fatigue test results suggested that the number of cycles (9 × 104 to 1.8 × 106) was greatly influenced by the porosity and heat-treatment process. The heat treatment of annealing greatly improved the fatigue performance of porous scaffolds. The irregular porous scaffolds with lower porosity and after full annealing exhibited the best fatigue behavior.


Asunto(s)
Ortopedia , Rayos Láser , Porosidad , Ingeniería de Tejidos , Titanio
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda