Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Med Virol ; 95(6): e28831, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37246793

RESUMEN

Despite the higher transmissibility of Omicron Variant of Concern (VOC), several reports have suggested lower risk for hospitalization and severe outcomes compared to previous variants of SARS-CoV-2. This study, enrolling all COVID-19 adults admitted to a reference hospital who underwent both the S-gene-target-failure test and VOC identification by Sanger sequencing, aimed to describe the evolving prevalence of Delta and Omicron variants and to compare the main in-hospital outcomes of severity, during a trimester (December 2021 to March 2022) of VOCs' cocirculation. Factors associated with clinical progression to noninvasive ventilation (NIV)/mechanical ventilation (MV)/death within 10 days and to MV/admission to intensive care unit (ICU)/death within 28 days, were investigated through multivariable logistic regressions. Overall, VOCs were: Delta n = 130/428, Omicron n = 298/428 (sublineages BA.1 n = 275 and BA.2 n = 23). Until mid-February, Delta predominance shifted to BA.1, which was gradually displaced by BA.2 until mid-March. Participants with Omicron VOC were more likely to be older, fully vaccinated, with multiple comorbidities and to have a shorter time from symptoms' onset, and less likely to have systemic symptoms and respiratory complications. Although the need of NIV within 10 days and MV within 28 days from hospitalization and the admission to ICU were less frequent for patients with Omicron compared to those with Delta infections, mortality was similar between the two VOCs. In the adjusted analysis, multiple comorbidities and a longer time from symptoms' onset predicted 10-day clinical progression, while complete vaccination halved the risk. Multimorbidity was the only risk factor associated with 28-day clinical progression. In our population, in the first trimester of 2022, Omicron rapidly displaced Delta in COVID-19 hospitalized adults. Clinical profile and presentation differed between the two VOCs and, although Omicron infections showed a less severe clinical picture, no substantial differences for clinical progression were found. This finding suggests that any hospitalization, especially in more vulnerable individuals, may be at risk for severe progression, which is more related to the underlying frailty of patients than to the intrinsic severity of the viral variant.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Hospitales , Progresión de la Enfermedad
2.
Emerg Infect Dis ; 28(4): 865-869, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35318936

RESUMEN

We report detecting infectious Toscana virus in the seminal fluid of a 25-year-old man from Italy returning from Elba Island. The presence of infectious virus in human semen adds Toscana virus to the long list of viruses detected in this genital fluid and indicates a potential for sexual transmission.


Asunto(s)
Líquidos Corporales , Enfermedades Transmisibles , Virus de Nápoles de la Fiebre de la Mosca de los Arenales , Adulto , Feto , Humanos , Masculino , Virus de Nápoles de la Fiebre de la Mosca de los Arenales/genética , Semen
3.
J Antimicrob Chemother ; 77(10): 2683-2687, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35848782

RESUMEN

BACKGROUND: Remdesivir is the first antiviral drug against SARS-CoV-2 approved for use in COVID-19 patients. OBJECTIVES: To study the pharmacokinetic inter-individual variability of remdesivir and its main metabolite GS-441524 in a real-world setting of COVID-19 inpatients and to identify possible associations with different demographic/biochemical variables. METHODS: Inpatients affected by SARS-CoV-2 infections, undergoing standard-dose remdesivir treatment, were prospectively enrolled. Blood samples were collected on day 4, immediately after (C0) and at 1 h (C1) and 24 h (C24) after infusion. Remdesivir and GS-441524 concentrations were measured using a validated UHPLC-MS/MS method and the AUC0-24 was calculated. At baseline, COVID-19 severity (ICU or no ICU), sex, age, BMI and renal and liver functions were assessed. Transaminases and estimated glomerular filtration rate (e-GFR) were also evaluated during treatment. Linear regression, logistic regression and multiple linear regression tests were used for statistical comparisons of pharmacokinetic parameters and variables. RESULTS: Eighty-five patients were included. The mean (CV%) values of remdesivir were: C0 2091 (99.1%) ng/mL, C1 139.7 (272.4%) ng/mL and AUC0-24 2791 (175.7%) ng·h/mL. The mean (CV%) values of GS-441524 were: C0 90.2 (49.5%) ng/mL, C1 104.9 (46.6%) ng/mL, C24 58.4 (66.9) ng/mL and AUC0-24 1976 (52.6%) ng·h/mL. The multiple regression analysis showed that age (P < 0.05) and e-GFR (P < 0.01) were independent predictors of GS-441524 plasma exposure. CONCLUSIONS: Our results showed a high interpatient variability of remdesivir and GS-441524 likely due to both age and renal function in COVID-19 inpatients. Further research is required to understand whether the pharmacokinetics of remdesivir and its metabolites may influence drug-related efficacy or toxic effect.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Adenosina/análogos & derivados , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/efectos adversos , Humanos , Pirroles , SARS-CoV-2 , Espectrometría de Masas en Tándem/métodos , Transaminasas , Triazinas
4.
Clin Proteomics ; 19(1): 38, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348270

RESUMEN

Most patients infected with SARS-CoV-2 display mild symptoms with good prognosis, while 20% of patients suffer from severe viral pneumonia and up to 5% may require intensive care unit (ICU) admission due to severe acute respiratory syndrome, which could be accompanied by multiorgan failure.Plasma proteomics provide valuable and unbiased information about disease progression and therapeutic candidates. Recent proteomic studies have identified molecular changes in plasma of COVID-19 patients that implied significant dysregulation of several aspects of the inflammatory response accompanied by a general metabolic suppression. However, which of these plasma alterations are associated with disease severity remains only partly characterized.A known limitation of proteomic studies of plasma samples is the large difference in the macromolecule abundance, with concentration spanning at least 10 orders of magnitude. To improve the coverage of plasma contents, we performed a deep proteomic analysis of plasma from 10 COVID-19 patients with severe/fatal pneumonia compared to 10 COVID-19 patients with pneumonia who did not require ICU admission (non-ICU). To this aim, plasma samples were first depleted of the most abundant proteins, trypsin digested and peptides subjected to a high pH reversed-phase peptide fractionation before LC-MS analysis.These results highlighted an increase of proteins involved in neutrophil and platelet activity and acute phase response, which is significantly higher in severe/fatal COVID-19 patients when compared to non-ICU ones. Importantly, these changes are associated with a selective induction of complement cascade factors in severe/fatal COVID-19 patients. Data are available via ProteomeXchange with identifier PXD036491. Among these alterations, we confirmed by ELISA that higher levels of the neutrophil granule proteins DEFA3 and LCN2 are present in COVID-19 patients requiring ICU admission when compared to non-ICU and healthy donors.Altogether, our study provided an in-depth view of plasma proteome changes that occur in COVID-19 patients in relation to disease severity, which can be helpful to identify therapeutic strategies to improve the disease outcome.

5.
Medicina (Kaunas) ; 58(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36013571

RESUMEN

Background and Objectives: Background: Coronavirus disease 2019 (COVID-19) is a novel cause of Acute Respiratory Distress Syndrome (ARDS). Noninvasive ventilation (NIV) is widely used in patients with ARDS across several etiologies. Indeed, with the increase of ARDS cases due to the COVID-19 pandemic, its use has grown significantly in hospital wards. However, there is a lack of evidence to support the efficacy of NIV in patients with COVID-19 ARDS. Materials and Methods: We conducted an observational cohort study including adult ARDS COVID-19 patients admitted in a third level COVID-center in Rome, Italy. The study analyzed the rate of NIV failure defined by the occurrence of orotracheal intubation and/or death within 28 days from starting NIV, its effectiveness, and the associated relative risk of death. The factors associated with the outcomes were identified through logistic regression analysis. Results: During the study period, a total of 942 COVID-19 patients were admitted to our hospital, of which 307 (32.5%) presented with ARDS at hospitalization. During hospitalization 224 (23.8%) were treated with NIV. NIV failure occurred in 84 (37.5%) patients. At 28 days from starting NIV, moderate and severe ARDS had five-fold and twenty-fold independent increased risk of NIV failure (adjusted odds ratio, aOR = 5.01, 95% CI 2.08−12.09, and 19.95, 95% CI 5.31−74.94), respectively, compared to patients with mild ARDS. A total of 128 patients (13.5%) were admitted to the Intensive Care Unit (ICU). At 28-day from ICU admission, intubated COVID-19 patients treated with early NIV had 40% lower mortality (aOR 0.60, 95% CI 0.25−1.46, p = 0.010) compared with patients that underwent orotracheal intubation without prior NIV. Conclusions: These findings show that NIV failure was independently correlated with the severity category of COVID-19 ARDS. The start of NIV in COVID-19 patients with mild ARDS (P/F > 200 mmHg) appears to increase NIV effectiveness and reduce the risk of orotracheal intubation and/or death. Moreover, early NIV (P/F > 200 mmHg) treatment seems to reduce the risk of ICU mortality at 28 days from ICU admission.


Asunto(s)
COVID-19 , Ventilación no Invasiva , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Adulto , COVID-19/complicaciones , Estudios de Cohortes , Hospitales , Humanos , Unidades de Cuidados Intensivos , Pandemias , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia , Insuficiencia Respiratoria/etiología
6.
J Infect Dis ; 222(11): 1807-1815, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32914853

RESUMEN

BACKGROUND: Descriptions of the pathological features of coronavirus disease-2019 (COVID-19) caused by the novel zoonotic pathogen severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emanate from tissue biopsies, case reports, and small postmortem studies restricted to the lung and specific organs. Whole-body autopsy studies of COVID-19 patients have been sparse. METHODS: To further define the pathology caused by SARS-CoV-2 across all body organs, we performed autopsies on 22 patients with COVID-19 (18 with comorbidities and 4 without comorbidities) who died at the National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS Hospital, Rome, Italy. Tissues from the lung, heart, liver, kidney, spleen, and bone marrow (but not the brain) were examined. Only lung tissues were subject to transmission electron microscopy. RESULTS: COVID-19 caused multisystem pathology. Pulmonary and cardiovascular involvement were dominant pathological features. Extrapulmonary manifestations included hepatic, kidney, splenic, and bone marrow involvement, and microvascular injury and thrombosis were also detected. These findings were similar in patients with or without preexisting medical comorbidities. CONCLUSIONS: SARS-CoV-2 infection causes multisystem disease and significant pathology in most organs in patients with and without comorbidities.


Asunto(s)
COVID-19/patología , Adulto , Anciano , Anciano de 80 o más Años , Autopsia/métodos , Médula Ósea/patología , COVID-19/epidemiología , COVID-19/virología , Comorbilidad , Femenino , Humanos , Italia/epidemiología , Riñón/patología , Hígado/patología , Pulmón/patología , Masculino , Persona de Mediana Edad , Bazo/patología , Trombosis/patología , Enfermedades Vasculares/patología , Enfermedades Vasculares/virología
7.
Clin Infect Dis ; 71(16): 2272-2275, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32407466

RESUMEN

Increased production of inflammatory cytokines and myeloid-derived suppressor cells occurs in patients with coronavirus disease 2019. These inversely correlated with perforin-expressing natural killer (NK) and CD3+ T cells. We observed a lower number of perforin-expressing NK cells in intensive care unit (ICU) patients compared with non-ICU patients, suggesting an impairment of the immune cytotoxic arm as a pathogenic mechanism.


Asunto(s)
COVID-19/inmunología , Inflamación/sangre , Células Asesinas Naturales/inmunología , Perforina/inmunología , Linfocitos T Citotóxicos/inmunología , Anciano , COVID-19/sangre , Citocinas/inmunología , Femenino , Humanos , Inflamación/complicaciones , Inflamación/inmunología , Unidades de Cuidados Intensivos/estadística & datos numéricos , Italia , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , SARS-CoV-2
8.
J Antimicrob Chemother ; 75(10): 2977-2980, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32607555

RESUMEN

BACKGROUND: Remdesivir is a prodrug of the nucleoside analogue GS-441524 and is under evaluation for treatment of SARS-CoV-2-infected patients. OBJECTIVES: To evaluate the pharmacokinetics of remdesivir and GS-441524 in plasma, bronchoalveolar aspirate (BAS) and CSF in two critically ill COVID-19 patients. METHODS: Remdesivir was administered at 200 mg loading dose on the first day followed by 12 days of 100 mg in two critically ill patients. Blood samples were collected immediately after (C0) and at 1 (C1) and 24 h (C24) after intravenous administration on day 3 until day 9. BAS samples were collected on Days 4, 7 and 9 from both patients while one CSF on Day 7 was obtained in one patient. Remdesivir and GS-441524 concentrations were measured in these samples using a validated UHPLC-MS/MS method. RESULTS: We observed higher concentrations of remdesivir at C0 (6- to 7-fold higher than EC50 from in vitro studies) and a notable decay at C1. GS-441524 plasma concentrations reached a peak at C1 and persisted until the next administration. Higher concentrations of GS-441524 were observed in the patient with mild renal dysfunction. Mean BAS/plasma concentration ratios of GS-441524 were 2.3% and 6.4% in Patient 1 and Patient 2, respectively. The CSF concentration found in Patient 2 was 25.7% with respect to plasma. GS-441524 levels in lung and CNS suggest compartmental differences in drug exposure. CONCLUSIONS: We report the first pharmacokinetic evaluation of remdesivir and GS-441524 in recovered COVID-19 patients. Further study of the pharmacokinetic profile of remdesivir, GS-441524 and the intracellular triphosphate form are required.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Adenosina Trifosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacocinética , Betacoronavirus , Infecciones por Coronavirus/metabolismo , Enfermedad Crítica/terapia , Neumonía Viral/metabolismo , Adenosina Monofosfato/farmacocinética , Adenosina Monofosfato/uso terapéutico , Adenosina Trifosfato/farmacocinética , Adenosina Trifosfato/uso terapéutico , Anciano , Alanina/farmacocinética , Alanina/uso terapéutico , Antivirales/uso terapéutico , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/tratamiento farmacológico , Femenino , Humanos , Masculino , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/tratamiento farmacológico , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , SARS-CoV-2
11.
J Clin Med ; 13(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38541932

RESUMEN

Introduction: Coronavirus disease 2019 (COVID-19) is a significant and novel cause of acute respiratory distress syndrome (ARDS). During the COVID-19 pandemic, there has been an increase in the incidence of cases involving pneumothorax and pneumomediastinum. However, the risk factors associated with poor outcomes in these patients remain unclear. Methods: This observational study collected clinical and imaging data from COVID-19 patients with PTX and/or PNM across five tertiary hospitals in central Italy between 1 March 2020 and 1 March 2022. This study also calculated the incidence of PTX and PNM and utilized multivariable regression analysis and Kaplan-Meier curve analysis to identify predictor factors for 28-day mortality and 3-day orotracheal intubation after PTX/PNM. This study also considered the impact of the three main variants of concern (VoCs) (alfa, delta, and omicron) circulating during the study period. Results: During the study period, a total of 11,938 patients with COVID-19 were admitted. This study found several factors independently associated with a higher risk of death in COVID-19 patients within 28 days of pulmonary barotrauma. These factors included a SOFA score ≥ 4 (OR 3.22, p = 0.013), vasopressor/inotropic therapy (OR 11.8, p < 0.001), hypercapnia (OR 2.72, p = 0.021), PaO2/FiO2 ratio < 150 mmHg (OR 10.9, p < 0.001), and cardiovascular diseases (OR 7.9, p < 0.001). This study also found that a SOFA score ≥ 4 (OR 3.10, p = 0.015), PCO2 > 45 mmHg (OR 6.0, p = 0.003), and P/F ratio < 150 mmHg (OR 2.9, p < 0.042) were factors independently associated with a higher risk of orotracheal intubation (OTI) within 3 days from PTX/PNM in patients with non-invasive mechanical ventilation. SARS-CoV-2 VoCs were not associated with 28-day mortality or the risk of OTI. The estimated cumulative probability of OTI in patients after pneumothorax was 44.0% on the first day, 67.8% on the second day, and 68.9% on the third day, according to univariable survival analysis. In patients who had pneumomediastinum only, the estimated cumulative probability of OTI was 37.5%, 46.7%, and 57.7% on the first, second, and third days, respectively. The overall incidence of PTX/PNM among hospitalized COVID-19 patients was 1.42%, which increased up to 4.1% in patients receiving invasive mechanical ventilation. Conclusions: This study suggests that a high SOFA score (≥4), the need for vasopressor/inotropic therapy, hypercapnia, and PaO2/FiO2 ratio < 150 mmHg in COVID-19 patients with pulmonary barotrauma are associated with higher rates of intubation, ICU admission, and mortality. Identifying these risk factors early on can help healthcare providers anticipate and manage these patients more effectively and provide timely interventions with appropriate intensive care, ultimately improving their outcomes.

12.
Biomedicines ; 11(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36831087

RESUMEN

Background: In Italy, by the end of 2021, a new pandemic wave led to increased hospitalizations and death, even in some vaccinated people. We aimed to investigate the death of COVID-19-vaccinated patients who acquired infection and developed severe disease, and to assess differences with fatal COVID-19 in unvaccinated subjects by studying the pathological events triggered by SARS-CoV-2. Methods: Detailed autoptic examination was performed on five fully vaccinated compared to five unvaccinated patients. Histopathological analysis focused on the lung and heart, the two major affected organs. Results: COVID-19 caused, or contributed to death, in all the unvaccinated cases. By contrast, in vaccinated group, pre-existing pathologies played a major role, and death was not COVID-19-related in four out of five patients. These patients did not show the histological features of SARS-CoV-2 lung damage. Diffuse inflammatory macrophages infiltration recently emerged as the main feature of COVID-19 cardiac injury. Interestingly, the most striking difference between the two groups was the absence of increased macrophage infiltration in the heart of vaccinated patients. Conclusions: Results of this study confirm the efficacy of anti-SARS-CoV-2 vaccination in protecting organs from injury and support the need to maintain an adequate immune response by booster dose administration.

13.
J Pers Med ; 12(6)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35743740

RESUMEN

Purpose: To analyze the vaccine effect by comparing five groups: unvaccinated patients with Alpha variant, unvaccinated patients with Delta variant, vaccinated patients with Delta variant, unvaccinated patients with Omicron variant, and vaccinated patients with Omicron variant, assessing the "gravity" of COVID-19 pulmonary involvement, based on CT findings in critically ill patients admitted to Intensive Care Unit (ICU). Methods: Patients were selected by ICU database considering the period from December 2021 to 23 March 2022, according to the following inclusion criteria: patients with proven Omicron variant COVID-19 infection with known COVID-19 vaccination with at least two doses and with chest Computed Tomography (CT) study during ICU hospitalization. Wee also evaluated the ICU database considering the period from March 2020 to December 2021, to select unvaccinated consecutive patients with Alpha variant, subjected to CT study, consecutive unvaccinated and vaccinated patients with Delta variant, subjected to CT study, and, consecutive unvaccinated patients with Omicron variant, subjected to CT study. CT images were evaluated qualitatively using a severity score scale of 5 levels (none involvement, mild: ≤25% of involvement, moderate: 26−50% of involvement, severe: 51−75% of involvement, and critical involvement: 76−100%) and quantitatively, using the Philips IntelliSpace Portal clinical application CT COPD computer tool. For each patient the lung volumetry was performed identifying the percentage value of aerated residual lung volume. Non-parametric tests for continuous and categorical variables were performed to assess statistically significant differences among groups. Results: The patient study group was composed of 13 vaccinated patients affected by the Omicron variant (Omicron V). As control groups we identified: 20 unvaccinated patients with Alpha variant (Alpha NV); 20 unvaccinated patients with Delta variant (Delta NV); 18 vaccinated patients with Delta variant (Delta V); and 20 unvaccinated patients affected by the Omicron variant (Omicron NV). No differences between the groups under examination were found (p value > 0.05 at Chi square test) in terms of risk factors (age, cardiovascular diseases, diabetes, immunosuppression, chronic kidney, cardiac, pulmonary, neurologic, and liver disease, etc.). A different median value of aerated residual lung volume was observed in the Delta variant groups: median value of aerated residual lung volume was 46.70% in unvaccinated patients compared to 67.10% in vaccinated patients. In addition, in patients with Delta variant every other extracted volume by automatic tool showed a statistically significant difference between vaccinated and unvaccinated group. Statistically significant differences were observed for each extracted volume by automatic tool between unvaccinated patients affected by Alpha variant and vaccinated patients affected by Delta variant of COVID-19. Good statistically significant correlations among volumes extracted by automatic tool for each lung lobe and overall radiological severity score were obtained (ICC range 0.71−0.86). GGO was the main sign of COVID-19 lesions on CT images found in 87 of the 91 (95.6%) patients. No statistically significant differences were observed in CT findings (ground glass opacities (GGO), consolidation or crazy paving sign) among patient groups. Conclusion: In our study, we showed that in critically ill patients no difference were observed in terms of severity of disease or exitus, between unvaccinated and vaccinated patients. The only statistically significant differences were observed, with regard to the severity of COVID-19 pulmonary parenchymal involvement, between unvaccinated patients affected by Alpha variant and vaccinated patients affected by Delta variant, and between unvaccinated patients with Delta variant and vaccinated patients with Delta variant.

14.
J Clin Med ; 12(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36614934

RESUMEN

Aero-medical evacuation has been considered as a feasible and safe treatment option during COVID pandemic, particularly when the needs of affected patients exceed what local clinics and hospitals are supposed to provide. In this article, we analyzed the clinical course of 17 patients medically evacuated to the "L. Spallanzani" Institute in Rome, Italy from foreign countries, mainly Africa and Eastern Europe, who had COVID-19 pneumonia with, or without, coinfections such as malaria, HIV, tuberculosis and microbiologically confirmed sepsis syndrome. The aero-medical evacuation of patients with infectious diseases has become one of the greatest medical achievements we have reached during this pandemic; in fact, only two patients with life threatening coinfections have died. Although logistically difficult and cost consuming, medical evacuation should be considered as a treatment option more than a single extraordinary measure, especially among complex cases that require specific technical and human resources.

15.
J Clin Med ; 11(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35329872

RESUMEN

Background: There is conflicting evidence for how HIV influences COVID-19 infection. The aim of this study was to compare characteristics at presentation and the clinical outcomes of people living with HIV (PLWH) versus HIV-negative patients (non-PLWH) hospitalized with COVID-19. Methods: Primary endpoint: time until invasive ventilation/death. Secondary endpoints: time until ventilation/death, time until symptoms resolution. Results: A total of 1647 hospitalized patients were included (43 (2.6%) PLWH, 1604 non-PLWH). PLWH were younger (55 vs. 61 years) and less likely to be with PaO2/FiO2 < 300 mmHg compared with non-PLWH. Among PLWH, nadir of CD4 was 185 (75−322) cells/µL; CD4 at COVID-19 diagnosis was 272 cells/µL (127−468) and 77% of these were virologically suppressed. The cumulative probability of invasive mechanical ventilation/death at day 15 was 4.7% (95%CI 1.2−17.3) in PLWH versus 18.9% (16.9−21.1) in non-PLWH (p = 0.023). The cumulative probability of non-invasive/invasive ventilation/death at day 15 was 20.9% (11.5−36.4) in PLWH versus 37.6% (35.1−40.2) in non-PLWH (p = 0.044). The adjusted hazard ratio (aHR) of invasive mechanical ventilation/death of PLWH was 0.49 (95% CI 0.12−1.96, p = 0.310) versus non-PLWH; similarly, aHR of non-invasive/invasive ventilation/death of PLWH was 1.03 (95% CI 0.53−2.00, p = 0.926). Conclusion: A less-severe presentation of COVID-19 at hospitalization was observed in PLWH compared to non-PLWH; no difference in clinical outcomes could be detected.

16.
J Clin Med ; 11(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35566715

RESUMEN

(1) Background: Although COVID-19 is largely a respiratory disease, it is actually a systemic disease that has a wide range of effects that are not yet fully known. The aim of this study was to determine the incidence, predictors and outcome of non-hepatic hyperammonemia (NHH) in COVID-19 in intensive care unit (ICU); (2) Methods: This is a 3-month prospective observational study in a third-level COVID-19 hospital. The authors collected demographic, clinical, severity score and outcome data. Logistic regression analyses were performed to identify predictors of NHH; (3) Results: 156 COVID-19 patients were admitted to the ICU. The incidence of NHH was 12.2% (19 patients). The univariate analysis showed that invasive mechanical ventilation had a 6.6-fold higher risk (OR 6.66, 95% CI 0.86-51.6, p = 0.039) for NHH, while in the multiple regression analysis, there was a 7-fold higher risk for NHH-but it was not statistically significant (OR 7.1, 95% CI 0.90-56.4, p = 0.062). Demographics, clinical characteristics and mortality in the ICU at 28 days did not show a significant association with NHH. (4) Conclusions: The incidence of NHH in ICU COVID-19 patients was not low. NHH did not appear to significantly increase mortality, and all patients with non-hepatic hyperammonemia were successfully treated without further complications. However, the pathogenesis of NHH in ICU patients with COVID-19 remains a topic to be explored with further research.

17.
J Anesth Analg Crit Care ; 2(1): 36, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37386603

RESUMEN

BACKGROUND: COVID­19 is a novel cause of acute respiratory distress syndrome (ARDS) that leads patients to intensive care unit (ICU) admission requiring invasive ventilation, who consequently are at risk of developing of ventilator­associated pneumonia (VAP). The aim of this study was to assess the incidence, antimicrobial resistance, risk factors, and outcome of VAP in ICU COVID-19 patients in invasive mechanical ventilation (MV). METHODS: Observational prospective study including adult ICU admissions between January 1, 2021, and June 31, 2021, with confirmed COVID-19 diagnosis were recorded daily, including demographics, medical history, ICU clinical data, etiology of VAPs, and the outcome. The diagnosis of VAP was based on multi-criteria decision analysis which included a combination of radiological, clinical, and microbiological criteria in ICU patients in MV for at least 48 h. RESULTS: Two hundred eighty-four COVID-19 patients in MV were admitted in ICU. Ninety-four patients (33%) had VAP during the ICU stay, of which 85 had a single episode of VAP and 9 multiple episodes. The median time of onset of VAP from intubation were 8 days (IQR, 5-13). The overall incidence of VAP was of 13.48 episodes per 1000 days in MV. The main etiological agent was Pseudomonas aeruginosa (39.8% of all VAPs) followed by Klebsiella spp. (16.5%); of them, 41.4% and 17.6% were carbapenem resistant, respectively. Patients during the mechanical ventilation in orotracheal intubation (OTI) had a higher incidence than those in tracheostomy, 16.46 and 9.8 episodes per 1000-MV day, respectively. An increased risk of VAP was reported in patients receiving blood transfusion (OR 2.13, 95% CI 1.26-3.59, p = 0.005) or therapy with Tocilizumab/Sarilumab (OR 2.08, 95% CI 1.12-3.84, p = 0.02). The pronation and PaO2/FiO2 ratio at ICU admission were not significantly associated with the development of VAPs. Furthermore, VAP episodes did not increase the risk of death in ICU COVID-19 patients. CONCLUSIONS: COVID-19 patients have a higher incidence of VAP compared to the general ICU population, but it is similar to that of ICU ARDS patients in the pre-COVID-19 period. Interleukin-6 inhibitors and blood transfusions may increase the risk of VAP. The widespread use of empirical antibiotics in these patients should be avoided to reduce the selecting pressure on the growth of multidrug-resistant bacteria by implementing infection control measures and antimicrobial stewardship programs even before ICU admission.

18.
J Clin Med ; 10(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34300283

RESUMEN

The COVID-19 pandemic has produced an extraordinary care setting where physicians played, and continue to play, a critical role in containing viral spread and treating affected patients. Frontline workers have been receiving day-to-day new information about therapeutic advances. The purpose of the study is to analyse COVID-19 drug consumption trends in both acute and intensive care settings comparing Defined Daily Doses and the release of scientific clinical data from January to December 2020.

19.
Cells ; 10(5)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064487

RESUMEN

Liver injury in COVID-19 patients has progressively emerged, even in those without a history of liver disease, yet the mechanism of liver pathogenicity is still controversial. COVID-19 is frequently associated with increased serum ferritin levels, and hyperferritinemia was shown to correlate with illness severity. The liver is the major site for iron storage, and conditions of iron overload have been established to have a pathogenic role in development of liver diseases. We presented here six patients who developed severe COVID-19, with biochemical evidence of liver failure. Three cases were survived patients, who underwent liver biopsy; the other three were deceased patients, who were autopsied. None of the patients suffered underlying liver pathologies. Histopathological and ultrastructural analyses were performed. The most striking finding we demonstrated in all patients was iron accumulation into hepatocytes, associated with degenerative changes. Abundant ferritin particles were found enclosed in siderosomes, and large aggregates of hemosiderin were found, often in close contact with damaged mitochondria. Iron-caused oxidative stress may be responsible for mitochondria metabolic dysfunction. In agreement with this, association between mitochondria and lipid droplets was also found. Overall, our data suggest that hepatic iron overload could be the pathogenic trigger of liver injury associated to COVID-19.


Asunto(s)
COVID-19/diagnóstico , Sobrecarga de Hierro/etiología , Fallo Hepático/etiología , Hígado/patología , Índice de Severidad de la Enfermedad , Adulto , Anciano , Antivirales , Biopsia , COVID-19/complicaciones , COVID-19/mortalidad , COVID-19/terapia , Femenino , Ferritinas/análisis , Hepatocitos/citología , Hepatocitos/patología , Humanos , Hierro/análisis , Hierro/metabolismo , Sobrecarga de Hierro/mortalidad , Sobrecarga de Hierro/patología , Sobrecarga de Hierro/terapia , Hígado/citología , Hígado/metabolismo , Fallo Hepático/mortalidad , Fallo Hepático/patología , Fallo Hepático/terapia , Pruebas de Función Hepática , Masculino , Persona de Mediana Edad , Mitocondrias/patología , Respiración con Presión Positiva , SARS-CoV-2/aislamiento & purificación
20.
Cells ; 10(8)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34440879

RESUMEN

Massive platelet activation and thrombotic events characterize severe COVID-19, highlighting their critical role in SARS-CoV-2-induced immunopathology. Since there is a well-described expansion of myeloid-derived suppressor cells (MDSC) in severe COVID-19, we evaluated their possible role in platelet activation during SARS-CoV-2 infection. During COVID-19, a lower plasmatic L-arginine level was observed compared to healthy donors, which correlated with MDSC frequency. Additionally, activated GPIIb/IIIa complex (PAC-1) expression was higher on platelets from severe COVID-19 patients compared to healthy controls and inversely correlated with L-arginine plasmatic concentration. Notably, MDSC were able to induce PAC-1 expression in vitro by reducing L-arginine concentration, indicating a direct role of PMN-MDSC in platelet activation. Accordingly, we found a positive correlation between ex vivo platelet PAC-1 expression and PMN-MDSC frequency. Overall, our data demonstrate the involvement of PMN-MDSC in triggering platelet activation during COVID-19, highlighting a novel role of MDSC in driving COVID-19 pathogenesis.


Asunto(s)
Arginina/inmunología , COVID-19/inmunología , Células Supresoras de Origen Mieloide/inmunología , Activación Plaquetaria , Trombosis/etiología , Adulto , Anciano , Anciano de 80 o más Años , Arginina/fisiología , COVID-19/complicaciones , COVID-19/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Células Supresoras de Origen Mieloide/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda