Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Molecules ; 25(3)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012738

RESUMEN

Functional properties of each enzyme strictly depend on immobilization protocol used for linking enzyme and carrier. Different strategies were applied to prepare the immobilized derivatives of Rhizomucor miehei lipase (RML) and chemically aminated RML (NH2-RML). Both RML and NH2-RML forms were covalently immobilized on glyoxyl sepharose (Gx-RML and Gx-NH2-RML), glyoxyl sepharose dithiothreitol (Gx-DTT-RML and Gx-DTT-NH2-RML), activated sepharose with cyanogen bromide (CNBr-RML and CNBr-NH2-RML) and heterofunctional epoxy support partially modified with iminodiacetic acid (epoxy-IDA-RML and epoxy-IDA-NH2-RML). Immobilization varied from 11% up to 88% yields producing specific activities ranging from 0.5 up to 1.9 UI/mg. Great improvement in thermal stability for Gx-DTT-NH2-RML and epoxy-IDA-NH2-RML derivatives was obtained by retaining 49% and 37% of their initial activities at 70 °C, respectively. The regioselectivity of each derivative was also examined in hydrolysis of fish oil at three different conditions. All the derivatives were selective between cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) in favor of EPA. The highest selectivity (32.9 folds) was observed for epoxy-IDA-NH2-RML derivative in the hydrolysis reaction performed at pH 5 and 4 °C. Recyclability study showed good capability of the immobilized biocatalysts to be used repeatedly, retaining 50-91% of their initial activities after five cycles of the reaction.


Asunto(s)
Enzimas Inmovilizadas/química , Aceites de Pescado/química , Lipasa/química , Rhizomucor/enzimología , Catálisis , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , Solventes/química , Temperatura
2.
Angew Chem Int Ed Engl ; 59(47): 21080-21087, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32755070

RESUMEN

Enzyme-powered micro/nanomotors have myriads of potential applications in various areas. To efficiently reach those applications, it is necessary and critical to understand the fundamental aspects affecting the motion dynamics. Herein, we explored the impact of enzyme orientation on the performance of lipase-powered nanomotors by tuning the lipase immobilization strategies. The influence of the lipase orientation and lid conformation on substrate binding and catalysis was analyzed using molecular dynamics simulations. Besides, the motion performance indicates that the hydrophobic binding (via OTES) represents the best orienting strategy, providing 48.4 % and 95.4 % increase in diffusion coefficient compared to hydrophilic binding (via APTES) and Brownian motion (no fuel), respectively (with C[triacetin] of 100 mm). This work provides vital evidence for the importance of immobilization strategy and corresponding enzyme orientation for the catalytic activity and in turn, the motion performance of nanomotors, and is thus helpful to future applications.


Asunto(s)
Lipasa/química , Nanotecnología , Saccharomycetales/enzimología , Interacciones Hidrofóbicas e Hidrofílicas , Lipasa/metabolismo , Simulación de Dinámica Molecular , Tamaño de la Partícula , Conformación Proteica , Propiedades de Superficie
3.
Langmuir ; 32(5): 1201-13, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26751761

RESUMEN

Biomedical magnetic colloids commonly used in magnetic hyperthermia experiments often display a bidisperse structure, i.e., are composed of stable nanoclusters coexisting with well-dispersed nanoparticles. However, the influence of nanoclusters in the optimization of colloids for heat dissipation is usually excluded. In this work, bidisperse colloids are used to analyze the effect of nanoclustering and long-range magnetic dipolar interaction on the magnetic hyperthermia efficiency. Two kinds of colloids, composed of magnetite cores with mean sizes of around 10 and 18 nm, coated with oleic acid and dispersed in hexane, and coated with meso-2,3-dimercaptosuccinic acid and dispersed in water, were analyzed. Small-angle X-ray scattering was applied to thoroughly characterize nanoparticle structuring. We proved that the magnetic hyperthermia performances of nanoclusters and single nanoparticles are distinctive. Nanoclustering acts to reduce the specific heating efficiency whereas a peak against concentration appears for the well-dispersed component. Our experiments show that the heating efficiency of a magnetic colloid can increase or decrease when dipolar interactions increase and that the colloid concentration, i.e., dipolar interaction, can be used to improve magnetic hyperthermia. We have proven that the power dissipated by an ensemble of dispersed magnetic nanoparticles becomes a nonextensive property as a direct consequence of the long-range nature of dipolar interactions. This knowledge is a key point in selecting the correct dose that has to be injected to achieve the desired outcome in intracellular magnetic hyperthermia therapy.

4.
Langmuir ; 30(49): 15022-30, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25420004

RESUMEN

The preparation and performance of a suitable chimeric biosensor based on antibodies (Abs) immobilized on lipase-coated magnetic particles by means of a standing orienting strategy are presented. This novel system is based on hydrophobic magnetic particles coated with modified lipase molecules able to orient and further immobilize different Abs in a covalent way without any previous site-selective chemical modification of biomacromolecules. Different key parameters attending the process were studied and optimized. The optimal preparation was performed using a controlled loading (1 nmol Ab g(-1) chimeric support) at pH 9 and a short reaction time to recover a biological activity of about 80%. AFM microscopy was used to study and confirm the Abs-oriented immobilization on lipase-coated magnetic particles and the final achievement of a highly active and recyclable chimeric immune sensor. This direct technique was demonstrated to be a powerful alternative to the indirect immunoactivity assay methods for the study of biomacromolecule-oriented immobilizations.


Asunto(s)
Anticuerpos Inmovilizados/química , Magnetismo , Microscopía de Fuerza Atómica , Técnicas Biosensibles , Modelos Biológicos , Modelos Moleculares , Tamaño de la Partícula
5.
Pharm Res ; 31(12): 3274-88, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24890197

RESUMEN

PURPOSE: Tumor cells can be effectively inactivated by heating mediated by magnetic nanoparticles. However, optimized nanomaterials to supply thermal stress inside the tumor remain to be identified. The present study investigates the therapeutic effects of magnetic hyperthermia induced by superparamagnetic iron oxide nanoparticles on breast (MDA-MB-231) and pancreatic cancer (BxPC-3) xenografts in mice in vivo. METHODS: Superparamagnetic iron oxide nanoparticles, synthesized either via an aqueous (MF66; average core size 12 nm) or an organic route (OD15; average core size 15 nm) are analyzed in terms of their specific absorption rate (SAR), cell uptake and their effectivity in in vivo hyperthermia treatment. RESULTS: Exceptionally high SAR values ranging from 658 ± 53 W*gFe (-1) for OD15 up to 900 ± 22 W*gFe (-1) for MF66 were determined in an alternating magnetic field (AMF, H = 15.4 kA*m(-1) (19 mT), f = 435 kHz). Conversion of SAR values into system-independent intrinsic loss power (ILP, 6.4 ± 0.5 nH*m(2)*kg(-1) (OD15) and 8.7 ± 0.2 nH*m(2)*kg(-1) (MF66)) confirmed the markedly high heating potential compared to recently published data. Magnetic hyperthermia after intratumoral nanoparticle injection results in dramatically reduced tumor volume in both cancer models, although the applied temperature dosages measured as CEM43T90 (cumulative equivalent minutes at 43°C) are only between 1 and 24 min. Histological analysis of magnetic hyperthermia treated tumor tissue exhibit alterations in cell viability (apoptosis and necrosis) and show a decreased cell proliferation. CONCLUSIONS: Concluding, the studied magnetic nanoparticles lead to extensive cell death in human tumor xenografts and are considered suitable platforms for future hyperthermic studies.


Asunto(s)
Campos Electromagnéticos , Hipertermia Inducida , Neoplasias Experimentales/terapia , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Compuestos Férricos , Humanos , Antígeno Ki-67 , Ratones , Nanopartículas , Neoplasias Experimentales/sangre , Temperatura , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Biosens Bioelectron ; 250: 116040, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38290380

RESUMEN

The COVID-19 pandemic has taught us valuable lessons, especially the urgent need for a widespread, rapid and sensitive diagnostic tool. To this, the integration of bidimensional nanomaterials, particularly graphene, into point-of-care biomedical devices is a groundbreaking strategy able to potentially revolutionize the diagnostic landscape. Despite advancements in the fabrication of these biosensors, the relationship between their surface biofunctionalization and sensing performance remains unclear. Here, we demonstrate that the combination of careful sensor fabrication and its precise surface biofunctionalization is crucial for exalting the sensing performances of 2D biosensors. Specifically, we have biofunctionalized Graphene Field-Effect Transistor (GFET) sensors surface through different biochemical reactions to promote either random/heterogeneous or oriented/homogeneous immobilization of the Anti-SARS-CoV-2 spike protein antibody. Each strategy was thoroughly characterized by in-silico simulations, physicochemical and biochemical techniques and electrical characterization. Subsequently, both biosensors were tested in the label-free direct titration of SARS-CoV-2 virus in simulated clinical samples, avoiding sample preprocessing and within short timeframes. Remarkably, the oriented GFET biosensor exhibited significantly enhanced reproducibility and responsiveness, surpassing the detection sensitivity of conventional non-oriented GFET by more than twofold. This breakthrough not only involves direct implications for COVID-19 surveillance and next pandemic preparedness but also clarify an unexplored mechanistic dimension of biosensor research utilizing 2D-nanomaterials.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Grafito , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Técnicas Biosensibles/métodos , Grafito/química , Pandemias , Reproducibilidad de los Resultados
7.
Biomed Pharmacother ; 174: 116492, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537579

RESUMEN

Targeting epigenetic mechanisms has emerged as a potential therapeutic approach for the treatment of kidney diseases. Specifically, inhibiting the bromodomain and extra-terminal (BET) domain proteins using the small molecule inhibitor JQ1 has shown promise in preclinical models of acute kidney injury (AKI) and chronic kidney disease (CKD). However, its clinical translation faces challenges due to issues with poor pharmacokinetics and side effects. Here, we developed engineered liposomes loaded with JQ1 with the aim of enhancing kidney drug delivery and reducing the required minimum effective dose by leveraging cargo protection. These liposomes efficiently encapsulated JQ1 in both the membrane and core, demonstrating superior therapeutic efficacy compared to freely delivered JQ1 in a mouse model of kidney ischemia-reperfusion injury. JQ1-loaded liposomes (JQ1-NPs) effectively targeted the kidneys and only one administration, one-hour after injury, was enough to decrease the immune cell (neutrophils and monocytes) infiltration to the kidney-an early and pivotal step to prevent damage progression. By inhibiting BRD4, JQ1-NPs suppress the transcription of pro-inflammatory genes, such as cytokines (il-6) and chemokines (ccl2, ccl5). This success not only improved early the kidney function, as evidenced by decreased serum levels of BUN and creatinine in JQ1-NPs-treated mice, along with reduced tissue expression of the damage marker, NGAL, but also halted the production of extracellular matrix proteins (Fsp-1, Fn-1, α-SMA and Col1a1) and the fibrosis development. In summary, this work presents a promising nanotherapeutic strategy for AKI treatment and its progression and provides new insights into renal drug delivery.


Asunto(s)
Azepinas , Proteínas que Contienen Bromodominio , Progresión de la Enfermedad , Riñón , Liposomas , Ratones Endogámicos C57BL , Proteínas Nucleares , Insuficiencia Renal Crónica , Daño por Reperfusión , Triazoles , Animales , Azepinas/farmacología , Azepinas/administración & dosificación , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Triazoles/farmacología , Triazoles/administración & dosificación , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/patología , Ratones , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Masculino , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Modelos Animales de Enfermedad , Nanopartículas , Proteínas de Ciclo Celular/antagonistas & inhibidores
8.
Anal Chem ; 85(15): 7060-8, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23819436

RESUMEN

The development of effective array biosensors relies heavily on careful control of the density of surface-immobilized ligands on the transducing platform. In this paper we describe the synthesis of new dextran-lipase conjugates for use in immobilizing low molecular weight haptens onto glass planar waveguides for immunosensor development. The conjugates were synthesized by immobilizing bacterial thermoalkalophilic lipases (Geobacillus thermocatenulatus lipase 2, BTL2) on agarose macroporous beads, followed by covalent coupling to dextran networks of variable molecular weight (1500-40000). The chimeras were immobilized via nonspecific hydrophobic interactions onto glass planar waveguides modified with 1,1,1,3,3,3-hexamethyldisilazane to obtain highly ordered and homogeneous molecular architectures as confirmed by atomic force microscopy. Microcystin LR (MCLR) was covalently bound to the dextran-BTL2 conjugates. The usefulness of this approach in immunosensor development was demonstrated by determining amounts of MCLR down to a few picograms per liter with an automated array biosensor and evanescent wave excitation for fluorescence measurements of attached DyLight649-labeled secondary antibody. Modifying BTL2 with dextrans of an increased molecular weight (>6000) provided surfaces with an increased loading capacity that was ascribed to the production of three-dimensional surfaces by the effect of analyte binding deep in the volume, leading to expanded dynamic ranges (0.09-136.56 ng L(-1)), lower limits of detection (0.007 ± 0.001 ng L(-1)), and lower IC50 values (4.4 ± 0.7 ng L(-1)). These results confirm the effectiveness of our approach for the development of high-performance biosensing platforms.


Asunto(s)
Dextranos/metabolismo , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Lipasa/química , Lipasa/metabolismo , Análisis por Micromatrices/métodos , Geobacillus/enzimología , Vidrio/química , Ligandos , Microcistinas/metabolismo , Peso Molecular , Porosidad , Sefarosa/química , Propiedades de Superficie
9.
Biomacromolecules ; 14(3): 602-7, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23406524

RESUMEN

This Communication presents the development of a novel strategy for the easy conjugation of biomolecules to hydrophobic magnetic microparticles via reversible coating with previously functionalized lipase molecules. First, the ability of lipase to be strongly adsorbed onto hydrophobic surfaces was exploited for the stabilization of microparticles in aqueous medium by the creation of a hydrophilic surface. Second, the surface amino acids of lipase can be tailored to suit biomolecule conjugation. This approach has been demonstrated by amino-epoxy activation of lipase, enabling the conjugation of different biomolecules to the magnetic particle's surface. For example, it was possible to immobilize 70% of Escherichia coli proteins on the recovered particles. Furthermore, this strategy could be extended to other lipase chemical modification protocols, enabling fine control of biomolecule coupling. These conjugation techniques constitute a modular methodology that also permits the recycling of the magnetic carrier following use.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Lipasa/química , Adsorción , Aminoácidos/química , Enzimas Inmovilizadas/química , Interacciones Hidrofóbicas e Hidrofílicas , Magnetismo , Nanopartículas/química , Propiedades de Superficie
10.
Biosens Bioelectron ; 222: 115006, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36538869

RESUMEN

Biosensors based on graphene field-effect transistors have become a promising tool for detecting a broad range of analytes. However, their performance is substantially affected by the functionalization protocol. In this work, we use a controlled in-vacuum physical method for the covalent functionalization of graphene to construct ultrasensitive aptamer-based biosensors (aptasensors) able to detect hepatitis C virus core protein. These devices are highly specific and robust, achieving attomolar detection of the viral protein in human blood plasma. Such an improved sensitivity is rationalized by theoretical calculations showing that induced polarization at the graphene interface, caused by the proximity of covalently bound molecular probe, modulates the charge balance at the graphene/aptamer interface. This charge balance causes a net shift of the Dirac cone providing enhanced sensitivity for the attomolar detection of the target proteins. Such an unexpected effect paves the way for using this kind of graphene-based functionalized platforms for ultrasensitive and real-time diagnostics of different diseases.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Hepatitis C , Humanos , Proteínas del Núcleo Viral , Hepatitis C/diagnóstico
11.
Eur J Pharm Biopharm ; 193: 241-253, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37972906

RESUMEN

Among the most harmful tumors detected in the human body, such as breast, colon, brain or pancreas, breast (BC) and colorectal cancer (CRC) are the first and third most frequent cancer worldwide, respectively. The current existing chemotherapeutic treatments present serious side effects due to their intravenous administration can induce cytotoxicity in healthy cells. Thus, new treatment methods based on drug-loaded polymeric nanofibers (NFs) have gained significant potential for their use in localized cancer chemotherapy. Here, a deep in vitro comparative analysis between maslinic acid (MA) and a tyramine-maslinic acid (TMA) derivative is initially performed. This analysis includes a proliferation, and a cell cycle assay, and a genotoxicity, antiangiogenic and apoptosis study. Then, the TMA derivative has been incorporated into electrospun polymeric NFs obtaining an implantable dressing material with antitumor activity. Two types of patches containing TMA-loaded polymeric NFs of poly(caprolactone) (PCL), and a mixture of polylactic acid/poly(4-vinylpyridine) (PLA/PVP) were fabricated by the electrospinning technique. The characterization of the drug-loaded NFs showed an encapsulation capacity of 0.027 mg TMA/mg PCL and 0.024 mg TMA/mg PLA/PVP. Then, the cytotoxic activity of both polymeric systems was tested in CRC (T84), BC (MCF-7) and a no tumor (L929) cell lines exposed to TMA-loaded NFs and blank NFs for 48 h. Moreover, cell cycle assay, genotoxicity, angiogenesis and apoptosis tests were carried out to study the mechanism of action of TMA. Blank NFs showed no-toxicity in all cell lines tested and both drug-loaded NFs significantly reduced cell proliferation (relative proliferation of ≈44 % and ≈25 % respectively). Therefore, TMA was less genotoxic than maslinic acid (MA), and reduced VEGFA expression in MCF-7 cells (1.32 and 2.12-fold for MA and TMA respectively). These results showed that TMA-loaded NFs could constitute a promising biocompatible and biodegradable nanoplatform for the local treatment of solid tumors such as CRC or BC.


Asunto(s)
Nanofibras , Neoplasias , Humanos , Preparaciones Farmacéuticas , Polímeros , Poliésteres
12.
Pharm Dev Technol ; 17(2): 219-26, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21077750

RESUMEN

The aim of the present work was the development of vaginal sponge-like dressings based on chitosan ascorbate (CS) and on hyaluronic acid sodium salt/lysine acetate (HAS) combination. Sponge-like dressings were prepared by freeze-drying and characterized for mechanical resistance and mucoadhesion. CS dressings show higher mechanical and mucoadhesion properties in comparison with HAS dressing. The enzymatic inhibition properties of the dressings were evaluated in vitro against carboxipeptidase A in view of their employment for vaginal delivery of peptidic drugs. All the dressings were able to inhibit carboxipeptidase activity; CS dressings, independently of polymer MW, completely inhibited enzyme activity. Release and penetration enhancement properties of the dressings loaded with a high molecular weight hydrophilic molecule, fluorescein isothiocyanate dextran (FD4), were assessed. CS dressings were able to prolong FD4 release. All the dressings showed penetration enhancement properties into pig vaginal mucosa although to a different extent: greater for dressings based on CS than for that containing HAS. Moreover, CS dressings demonstrated intrinsic antimicrobial properties. The suitability of sponge-like systems for the treatment of vaginal infections was assessed by loading the CS dressing characterized by the best mechanical and antimicrobial properties with an antibiotic drug (clyndamicin-2-phosphate) and by checking drug release.


Asunto(s)
Ácido Ascórbico/química , Vendajes , Quitosano/análogos & derivados , Dextranos/administración & dosificación , Fluoresceína-5-Isotiocianato/análogos & derivados , Ácido Hialurónico/química , Lisina/química , Vagina/metabolismo , Adhesividad , Administración a través de la Mucosa , Animales , Ácido Ascórbico/metabolismo , Quitosano/metabolismo , Dextranos/farmacocinética , Femenino , Fluoresceína-5-Isotiocianato/administración & dosificación , Fluoresceína-5-Isotiocianato/farmacocinética , Liofilización , Ácido Hialurónico/metabolismo , Lisina/metabolismo , Membrana Mucosa/metabolismo , Porosidad , Reología , Porcinos
13.
Biomater Adv ; 137: 212823, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35929238

RESUMEN

A new series of theranostic silica materials based on fibrous silica particles acting as nanocarriers of two different cytotoxic agents, namely, chlorambucil and an organotin metallodrug have been prepared and structurally characterized. Besides the combined therapeutic activity, these platforms have been decorated with a targeting molecule (folic acid, to selectively target triple negative breast cancer) and a molecular imaging agent (Alexa Fluor 647, to enable their tracking both in vitro and in vivo). The in vitro behaviour of the multifunctional silica systems showed a synergistic activity of the two chemotherapeutic agents in the form of an enhanced cytotoxicity against MDA-MB-231 cells (triple negative breast cancer) as well as by a higher cell migration inhibition. Subsequently, the in vivo applicability of the siliceous nanotheranostics was successfully assessed by observing with in vivo optical imaging techniques a selective tumour accumulation (targeting ability), a marked inhibition of tumour growth paired to a marked antiangiogenic ability after 13 days of systemic administration, thus, confirming the enhanced theranostic activity. The systemic nanotoxicity was also evaluated by analyzing specific biochemical markers. The results showed a positive effect in form of reduced cytotoxicity when both chemotherapeutics are administered in combination thanks to the fibrous silica nanoparticles. Overall, our results confirm the promising applicability of these novel silica-based nanoplatforms as advanced drug-delivery systems for the synergistic theranosis of triple negative breast cancer.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias de la Mama Triple Negativas , Antineoplásicos/farmacología , Humanos , Nanopartículas/uso terapéutico , Medicina de Precisión , Dióxido de Silicio/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
14.
Mater Today Bio ; 13: 100191, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35024597

RESUMEN

Inorganic materials can provide a set of tools to decontaminate solid, liquid or air containing viral particles. The use of disinfectants can be limited or not practical in scenarios where continuous cleaning is not feasible. Physicochemical differences between viruses raise the need for effective formulations for all kind of viruses. In the present work we describe two types of antimicrobial inorganic materials: i) a novel soda-lime glass (G3), and ii) kaolin containing metals nanoparticles (Ag or CuO), as materials to disable virus infectivity. Strong antiviral properties can be observed in G3 glass, and kaolin-containing nanoparticle materials showing a reduction of viral infectivity close to 99%. in the first 10 â€‹min of contact of vesicular stomatitis virus (VSV). A potent virucidal activity is also present in G3 and kaolin containing Ag or CuO nanoparticles against all kinds of viruses tested, reducing more than 99% the amount of HSV-1, Adenovirus, VSV, Influenza virus and SARS-CoV-2 exposed to them. Virucidal properties could be explained by a direct interaction of materials with viruses as well as inactivation by the presence of virucidal elements in the material lixiviates. Kaolin-based materials guarantee a controlled release of active nanoparticles with antiviral activity. Current coronavirus crisis highlights the need for new strategies to remove viruses from contaminated areas. We propose these low-cost inorganic materials as useful disinfecting antivirals in the actual or future pandemic threats.

15.
Polymers (Basel) ; 13(17)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34503029

RESUMEN

Cancer is the second leading cause of death in the world, which is why it is so important to make an early and very precise diagnosis to obtain a good prognosis. Thanks to the combination of several imaging modalities in the form of the multimodal molecular imaging (MI) strategy, a great advance has been made in early diagnosis, in more targeted and personalized therapy, and in the prediction of the results that will be obtained once the anticancer treatment is applied. In this context, magnetic nanoparticles have been positioned as strong candidates for diagnostic agents as they provide very good imaging performance. Furthermore, thanks to their high versatility, when combined with other molecular agents (for example, fluorescent molecules or radioisotopes), they highlight the advantages of several imaging techniques at the same time. These hybrid nanosystems can be also used as multifunctional and/or theranostic systems as they can provide images of the tumor area while they administer drugs and act as therapeutic agents. Therefore, in this review, we selected and identified more than 160 recent articles and reviews and offer a broad overview of the most important concepts that support the synthesis and application of multifunctional magnetic nanoparticles as molecular agents in advanced cancer detection based on the multimodal molecular imaging approach.

16.
Polymers (Basel) ; 13(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34833209

RESUMEN

The treatment of skin wounds poses significant clinical challenges, including the risk of bacterial infection. In particular due to its antimicrobial and tissue regeneration abilities chitosan (a polymeric biomaterial obtained by the deacetylation of chitin) has received extensive attention for its effectiveness in promoting skin wound repair. On the other hand, due to their intrinsic characteristics, metal nanoparticles (e.g., silver (Ag), gold (Au) or iron oxide (Fe3O4)) have demonstrated therapeutic properties potentially useful in the field of skin care. Therefore, the combination of these two promising materials (chitosan plus metal oxide NPs) could permit the achievement of a promising nanohybrid with enhanced properties that could be applied in advanced skin treatment. In this work, we have optimized the synthesis protocol of chitosan/metal hybrid nanoparticles by means of a straightforward synthetic method, ionotropic gelation, which presents a wide set of advantages. The synthesized hybrid NPs have undergone to a full physicochemical characterization. After that, the in vitro antibacterial and tissue regenerative activities of the achieved hybrids have been assessed in comparison to their individual constituent. As result, we have demonstrated the synergistic antibacterial plus the tissue regeneration enhancement of these nanohybrids as a consequence of the fusion between chitosan and metallic nanoparticles, especially in the case of chitosan/Fe3O4 hybrid nanoparticles.

17.
Cancers (Basel) ; 12(1)2020 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-31940937

RESUMEN

Three different multifunctional nanosystems based on the tethering onto mesoporous silica nanoparticles (MSN) of different fragments such as an organotin-based cytotoxic compound Ph3Sn{SCH2CH2CH2Si(OMe)3} (MSN-AP-Sn), a folate fragment (MSN-AP-FA-Sn), and an enzyme-responsive peptide able to release the metallodrug only inside cancer cells (MSN-AP-FA-PEP-S-Sn), have been synthesized and fully characterized by applying physico-chemical techniques. After that, an in vitro deep determination of the therapeutic potential of the achieved multifunctional nanovectors was carried out. The results showed a high cytotoxic potential of the MSN-AP-FA-PEP-S-Sn material against triple negative breast cancer cell line (MDA-MB-231). Moreover, a dose-dependent metallodrug-related inhibitory effect on the migration mechanism of MDA-MB-231 tumor cells was shown. Subsequently, the organotin-functionalized nanosystems have been further modified with the NIR imaging agent Alexa Fluor 647 to give three different theranostic silica-based nanoplatforms, namely, MSN-AP-Sn-AX (AX-1), MSN-AP-FA-Sn-AX (AX-2), and MSN-AP-FA-PEP-S-Sn-AX (AX-3). Their in vivo potential as theranostic markers was further evaluated in a xenograft mouse model of human breast adenocarcinoma. Owing to the combination of the receptor-mediated site targeting and the specific fine-tuned release mechanism of the organotin metallodrug, the nanotheranostic drug MSN-AP-FA-PEP-S-Sn-AX (AX-3) has shown targeted diagnostic ability in combination with enhanced therapeutic activity by promoting the inhibition of tumor growth with reduced hepatic and renal toxicity upon the repeated administration of the multifunctional nanodrug.

18.
Mater Sci Eng C Mater Biol Appl ; 107: 110262, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31761230

RESUMEN

Magnetic resonance imaging (MRI) is the most powerful technique for non-invasive diagnosis of human diseases and disorders. Properly designed contrast agents can be accumulated in the damaged zone and be internalized by cells, becoming interesting cellular MRI probes for disease tracking and monitoring. However, this approach is sometimes limited by the relaxation rates of contrast agents currently in clinical use, which show neither optimal pharmacokinetic parameters nor toxicity. In this work, a suitable contrast agent candidate, based on iron oxide nanoparticles (IONPs) coated with polyethyleneglycol, was finely designed, prepared and fully characterized under a physical, chemical and biological point of view. To stand out the real potential of our study, all the experiments were performed in comparison with Ferumoxytol, a FDA approved IONPs. IONPs with a core size of 15 nm and coated with polyethyleneglycol of 5 kDa (OD15-P5) resulted the best ones, being able to be uptaken by both tumoral cells and macrophages and showing no toxicity for in vitro and in vivo experiments. In vitro and in vivo MRI results for OD15-P5 showed r2 relaxivity values higher than Ferumoxitol. Furthermore, the injected OD15-P5 were completely retained at the tumor site for up to 24 h showing high potential as MRI contrast agents for real time long-lasting monitoring of the tumor evolution.


Asunto(s)
Medios de Contraste/química , Compuestos Férricos/química , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Polietilenglicoles/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Nanopartículas de Magnetita/toxicidad , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias/diagnóstico por imagen , Tamaño de la Partícula , Siloxanos/química
19.
Materials (Basel) ; 12(14)2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31295825

RESUMEN

Superparamagnetic iron oxide nanoparticles are one of the most prominent agents used in theranostic applications, with MRI imaging the main application assessed. The biomolecular interface formed on the surface of a nanoparticle in a biological medium determines its behaviour in vitro and in vivo. In this study, we have compared the formation of the protein corona on highly monodisperse iron oxide nanoparticles with two different coatings, dimercaptosuccinic acid (DMSA), and after conjugation, with a bifunctional polyethylene glycol (PEG)-derived molecule (2000 Da) in the presence of Wistar rat plasma. The protein fingerprints around the nanoparticles were analysed in an extensive proteomic study. The results presented in this work indicate that the composition of the protein corona is very difficult to predict. Proteins from different functional categories-cell components, lipoproteins, complement, coagulation, immunoglobulins, enzymes and transport proteins-were identified in all samples with very small variability. Although both types of nanoparticles have similar amounts of bonded proteins, very slight differences in the composition of the corona might explain the variation observed in the uptake and biotransformation of these nanoparticles in Caco-2 and RAW 264.7 cells. Cytotoxicity was also studied using a standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Controlling nanoparticles' reactivity to the biological environment by deciding on its surface functionalization may suggest new routes in the control of the biodistribution, biodegradation and clearance of multifunctional nanomedicines.

20.
ACS Omega ; 4(2): 3287-3297, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-31008418

RESUMEN

Technologically useful and robust graphene-based interfaces for devices require the introduction of highly selective, stable, and covalently bonded functionalities on the graphene surface, whilst essentially retaining the electronic properties of the pristine layer. This work demonstrates that highly controlled, ultrahigh vacuum covalent chemical functionalization of graphene sheets with a thiol-terminated molecule provides a robust and tunable platform for the development of hybrid nanostructures in different environments. We employ this facile strategy to covalently couple two representative systems of broad interest: metal nanoparticles, via S-metal bonds, and thiol-modified DNA aptamers, via disulfide bridges. Both systems, which have been characterized by a multitechnique approach, remain firmly anchored to the graphene surface even after several washing cycles. Atomic force microscopy images demonstrate that the conjugated aptamer retains the functionality required to recognize a target protein. This methodology opens a new route to the integration of high-quality graphene layers into diverse technological platforms, including plasmonics, optoelectronics, or biosensing. With respect to the latter, the viability of a thiol-functionalized chemical vapor deposition graphene-based solution-gated field-effect transistor array was assessed.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda