Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Chem Res Toxicol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990804

RESUMEN

Nicotinamide riboside (NR), a NAD+ precursor, has received attention due to several health benefits it has induced in experimental models. Studies in cultured cells, animals, and humans consistently show increased NAD+ availability after NR supplementation, which is considered the only mode of NR action that leads to health benefits. In the present study, we show that a persistently low NR concentration (1 µM) in the growth medium of BEAS-2B human cells, grown in a monolayer, induces energy stress, which precedes a cellular NAD+ increase after 192 h. NR concentrations greater than 1 µM under the specified conditions were cytotoxic in the 2D cell culture model, while all concentrations tested in the 3D cell culture model (BEAS-2B cell spheroids exposed to 1, 5, 10, and 50 µM NR) induced apoptosis. Shotgun proteomics revealed that NR modulated the abundance of proteins, agreeing with the observed effects on cellular energy metabolism and cell growth or survival. Energy stress may activate pathways that lead to health benefits such as cancer prevention. Accordingly, the premalignant 1198 cell line was more sensitive to NR cytotoxicity than the phenotypically normal parent BEAS-2B cell line. The role of a mild energy stress induced by low concentrations of NR in its beneficial effects deserves further investigation. On the other hand, strategies to increase the bioavailability of NR require attention to toxic effects that may arise.

2.
J Pathol ; 259(1): 56-68, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36219477

RESUMEN

Melanoma is a heterogenous malignancy with an unpredictable clinical course. Most patients who present in the clinic are diagnosed with primary melanoma, yet large-scale sequencing efforts have focused primarily on metastatic disease. In this study we sequence-profiled 524 American Joint Committee on Cancer Stage I-III primary tumours. Our analysis of these data reveals recurrent driver mutations, mutually exclusive genetic interactions, where two genes were never or rarely co-mutated, and an absence of co-occurring genetic events. Further, we intersected copy number calls from our primary melanoma data with whole-genome CRISPR screening data to identify the transcription factor interferon regulatory factor 4 (IRF4) as a melanoma-associated dependency. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Melanoma , Humanos , Mutación , Melanoma/genética , Genoma , Genómica , Reino Unido
3.
Altern Lab Anim ; 52(1): 60-68, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061994

RESUMEN

The Brazilian National Network of Alternative Methods (RENAMA), which is linked to the Ministry of Science, Technology and Innovation, is currently comprised of 51 laboratories from CROs, academia, industry and government. RENAMA's aim is to develop and validate new approach methodologies (NAMs), as well as train researchers and disseminate information on their use - thus reducing Brazilian, and consequently Latin American, dependence on external technology. Moreover, it promotes the adoption of NAMs by educators and trained researchers, as well as the implementation of good laboratory practice (GLP) and the use of certified products. The RENAMA network started its activities in 2012, and was originally comprised of three central laboratories - the National Institute of Metrology, Quality and Technology (INMETRO); the National Institute of Quality Control in Health (INCQS); and the National Brazilian Biosciences Laboratory (LNBio) - and ten associated laboratories. In 2022, RENAMA celebrated its 10th anniversary, a milestone commemorated by the organisation of a meeting attended by different stakeholders, including the RENAMA-associated laboratories, academia, non-governmental organisations and industry. Ninety-six participants attended the meeting, held on 26 May 2022 in Balneário Camboriú, SC, Brazil, as part of the programme of the XXIII Brazilian Congress of Toxicology 2022. Significant moments of the RENAMA were remembered, and new goals and discussion themes were established. The lectures highlighted recent innovations in the toxicological sciences that have translated into the assessment of consumer product safety through the use of human-relevant NAMs instead of the use of existing animal-based approaches. The challenges and opportunities in accepting such practices for regulatory purposes were also presented and discussed.


Asunto(s)
Aniversarios y Eventos Especiales , Laboratorios , Animales , Humanos , Brasil
4.
Biochem Cell Biol ; 101(3): 259-266, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36657128

RESUMEN

The human epidermal melanocyte (hEM) are melanin-producing cells that provide skin pigmentation and protection against ultraviolet radiation. Although purinergic signaling is involved in skin biology and pathology, the presence of NTPDase members, as well as the rate of nucleotides degradation by melanocytes were not described yet. Therefore, in this study, we analyzed the expression of ectonucleotidases in hEM derived from discarded foreskin of male patients. The expression of purinergic enzymes was confirmed by mRNA and flow cytometry. Among the ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase1 (NTPDase1) and ecto-5´-nucleotidase were the ectoenzymes with higher expressions. The hydrolysis rate for ATP, ADP, and AMP was low in comparison to other primary cells already investigated. The amount of ATP in the culture medium was increased after a scratch wound and decreased to basal levels in 48 h, while the NTPDase1 and P2X7 expressions increased. Therefore, it is possible to suggest that after cell injury, the ATP released by hEM into the extracellular space will be hydrolyzed by ectonucleotidases as the NTPDase1 that will control the levels of nucleotides in the skin micro-environment.


Asunto(s)
Nucleótidos , Rayos Ultravioleta , Humanos , Masculino , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Melanocitos/metabolismo , Piel/metabolismo , Adenosina Trifosfato/metabolismo
5.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37511073

RESUMEN

The endogenous estradiol derivative 2-Methoxyestradiol (2-ME) has shown good and wide anticancer activity but suffers from poor oral bioavailability and extensive metabolic conjugation. However, its sulfamoylated derivative, 2-methoxyestradiol-3,17-O,O-bis-sulfamate (STX140), has superior potential as a therapeutic agent, acts by disrupting microtubule polymerization, leading to cell cycle arrest and apoptosis in cancer cells and possesses much better pharmaceutical properties. This study investigated the antiproliferative and anti-invasive activities of STX140 in both SKMEL-28 naïve melanoma (SKMEL28-P) cells and resistant melanoma cells (SKMEL-28R). STX140 inhibited cell proliferation in the nanomolar range while having a less pronounced effect on human melanocytes. Additionally, STX140 induced cell cycle arrest in the G2/M phase and sub-G1, reduced migration, and clonogenic potential in monolayer models, and inhibited invasion in a 3D human skin model with melanoma cells. Furthermore, STX140 induced senescence features in melanoma and activated the senescence machinery by upregulating the expression of senescence genes and proteins related to senescence signaling. These findings suggest that STX140 may hold potential as a therapeutic agent for melanoma treatment.


Asunto(s)
Estrenos , Melanoma , Humanos , 2-Metoxiestradiol/farmacología , Estrenos/farmacología , Proliferación Celular , Melanoma/tratamiento farmacológico , Línea Celular Tumoral , Apoptosis
6.
J Cell Mol Med ; 26(3): 671-683, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35040264

RESUMEN

Our previous work using a melanoma progression model composed of melanocytic cells (melanocytes, primary and metastatic melanoma samples) demonstrated various deregulated genes, including a few known lncRNAs. Further analysis was conducted to discover novel lncRNAs associated with melanoma, and candidates were prioritized for their potential association with invasiveness or other metastasis-related processes. In this sense, we found the intergenic lncRNA U73166 (ENSG00000230454) and decided to explore its effects in melanoma. For that, we silenced the lncRNA U73166 expression using shRNAs in a melanoma cell line. Next, we experimentally investigated its functions and found that migration and invasion had significantly decreased in knockdown cells, indicating an essential association of lncRNA U73166 for cancer processes. Additionally, using naïve and vemurafenib-resistant cell lines and data from a patient before and after resistance, we found that vemurafenib-resistant samples had a higher expression of lncRNA U73166. Also, we retrieved data from the literature that indicates lncRNA U73166 may act as a mediator of RNA processing and cell invasion, probably inducing a more aggressive phenotype. Therefore, our results suggest a relevant role of lncRNA U73166 in metastasis development. We also pointed herein the lncRNA U73166 as a new possible biomarker or target to help overcome clinical vemurafenib resistance.


Asunto(s)
Melanoma , ARN Largo no Codificante , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Invasividad Neoplásica/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Arriba/genética , Vemurafenib/farmacología
7.
Biol Chem ; 403(3): 293-303, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34854272

RESUMEN

Melanoma is a type of skin cancer with low survival rates after it has metastasized. In order to find molecular differences that could represent targets of quercetin in anti-melanoma activity, we have chosen SKMEL-103 and SKMEL-28 melanoma cells and human melanocytes as models. Firstly, we observed that quercetin was able in reducing SKMEL-103 cell viability, but not in SKMEL-28. Besides that, quercetin treatment caused inhibition of AXL in both cell lines, but upregulation of PIM-1 in SKMEL-28 and downregulation in SKMEL-103. Moreover, HIF-1 alpha expression decreased in both cell lines. Interestingly, quercetin was more effective against SKMEL-103 than kinases inhibitors, such as Imatinib, Temsirolimus, U0126, and Erlotinib. Interestingly, we observed that while the levels of succinate dehydrogenase and voltage-dependent anion channel increased in SKMEL-103, both proteins were downregulated in SKMEL-28 after quercetin's treatment. Furthermore, AKT, AXL, PIM-1, ABL kinases were much more active and chaperones HSP90, HSP70 and GAPDH were highly expressed in SKMEL-103 cells in comparison with melanocytes. Our findings indicate, for the first time, that the efficacy of quercetin to kill melanoma cells depends on its ability in inhibiting tyrosine kinase and upregulating mitochondrial proteins, at least when SKMEL-103 and SKMEL-28 cells response were compared.


Asunto(s)
Melanoma , Quercetina , Apoptosis , GTP Fosfohidrolasas/metabolismo , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/farmacología , Quercetina/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/farmacología , Succinato Deshidrogenasa/metabolismo , Tirosina/farmacología
8.
Exp Dermatol ; 31(3): 427-432, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34710259

RESUMEN

Kynurenine (KYN), the most abundant metabolite of tryptophan, is classically associated with immune tolerance and tumor immune escape. In the last years, KYN is in the spotlight in other biological processes. Here, we showed that KYN inhibited tyrosinase expression and melanin content in primary human melanocyte and keratinocyte co-cultures. Furthermore, KYN decreased melanosome content in a 3D human skin reconstruction model. In these experiments, we used tyrosine + NH4 Cl to induce pigmentation. We compared the inhibitory effect of KYN on melanogenesis with the already known inhibitory effect promoted by IFN-γ. Since increased KYN production depends on the IFN-γ-inducible enzyme indoleamine-2,3-dioxygenase (IDO), we propose that part of the effect of IFN-γ on melanogenesis involves KYN production. From that, we tested if, during melanogenesis, changes in tryptophan metabolism would occur. For this purpose, we measured tryptophan, KYN and downstream products along with pigmentation. There were no significant changes in Trp metabolism, except for the high consumption of kynurenic acid. Our data identify the skin as a potential target for the action of KYN relevant for skin physiology and pigmentation. The results are discussed concerning the high production of KYN in skin inflammatory disorders and cancer.


Asunto(s)
Quinurenina , Triptófano , Técnicas de Cocultivo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Queratinocitos/metabolismo , Quinurenina/metabolismo , Melanocitos/metabolismo , Triptófano/farmacología
9.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555289

RESUMEN

(1) BRAF mutations are associated with high mortality and are a substantial factor in therapeutic decisions. Therapies targeting BRAF-mutated tumors, such as vemurafenib (PLX), have significantly improved the overall survival of melanoma patients. However, patient relapse and low response rates remain challenging, even with contemporary therapeutic alternatives. Highly proliferative tumors often rely on glycolysis to sustain their aggressive phenotype. 3-bromopyruvate (3BP) is a promising glycolysis inhibitor reported to mitigate resistance in tumors. This study aimed to evaluate the potential of 3BP as an antineoplastic agent for PLX-resistant melanoma treatment. (2) The effect of 3BP alone or in combination with PLX on viability, proliferation, colony formation, cell death, migration, invasion, epithelial-mesenchymal marker and metabolic protein expression, extracellular glucose and lactate, and reactive species were evaluated in two PLX-resistant melanoma cell lines. (3) 3BP treatment, which was more effective as monotherapy than combined with PLX, disturbed the metabolic and epithelial-mesenchymal profile of PLX-resistant cells, impairing their proliferation, migration, and invasion and triggering cell death. (4) 3BP monotherapy is a potent metabolic-disrupting agent against PLX-resistant melanomas, supporting the suppression of the malignant phenotype in this type of neoplasia.


Asunto(s)
Melanoma , Recurrencia Local de Neoplasia , Humanos , Vemurafenib/farmacología , Vemurafenib/uso terapéutico , Línea Celular Tumoral , Melanoma/patología , Fenotipo , Proteínas Proto-Oncogénicas B-raf/genética , Resistencia a Antineoplásicos/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología
10.
Pharmacol Res ; 173: 105911, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34560251

RESUMEN

In melanomas, therapy resistance can arise due to a combination of genetic, epigenetic and phenotypic mechanisms. Due to its crucial role in DNA supercoil relaxation, TOP1 is often considered an essential chemotherapeutic target in cancer. However, how TOP1 expression and activity might differ in therapy sensitive versus resistant cell types is unknown. Here we show that TOP1 expression is increased in metastatic melanoma and correlates with an invasive gene expression signature. More specifically, TOP1 expression is highest in cells with the lowest expression of MITF, a key regulator of melanoma biology. Notably, TOP1 and DNA Single-Strand Break Repair genes are downregulated in BRAFi- and BRAFi/MEKi-resistant cells and TOP1 inhibition decreases invasion markers only in BRAFi/MEKi-resistant cells. Thus, we show three different phenotypes related to TOP1 levels: i) non-malignant cells with low TOP1 levels; ii) metastatic cells with high TOP1 levels and high invasiveness; and iii) BRAFi- and BRAFi/MEKi-resistant cells with low TOP1 levels and high invasiveness. Together, these results highlight the potential role of TOP1 in melanoma progression and resistance.


Asunto(s)
ADN-Topoisomerasas de Tipo I , Resistencia a Antineoplásicos , Melanoma , Neoplasias Cutáneas , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Melanoma/mortalidad , Persona de Mediana Edad , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/mortalidad
11.
Arch Toxicol ; 95(5): 1779-1791, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674969

RESUMEN

Crack cocaine users are simultaneously exposed to volatilized cocaine and to its main pyrolysis product, anhydroecgonine methyl ester (AEME). Although the neurotoxic effects of cocaine have been extensively studied, little is known about AEME or its combination. We investigated cell death processes using rat primary hippocampal cells exposed to cocaine (2 mM), AEME (1 mM) and their combination (C + A), after 1, 3, 6 and 12 h. Cocaine increased LC3 I after 6 h and LC3 II after 12 h, but reduced the percentage of cells with acid vesicles, suggesting failure in the autophagic flux, which activated the extrinsic apoptotic pathway after 12 h. AEME neurotoxicity did not involve the autophagic process; rather, it activated caspase-9 after 6 h and caspase-8 after 12 h leading to a high percentage of cells in early apoptosis. C + A progressively reduced the percentage of undamaged cells, starting after 3 h; it activated both apoptotic pathways after 6 h, and was more neurotoxic than cocaine and AEME alone. Also, C + A increased the phosphorylation of p62 after 12 h, but there was little difference in LC3 I or II, and a small percentage of cells with acid vesicles at all time points investigated. In summary, the present study provides new evidence for the neurotoxic mechanism and timing response of each substance alone and in combination, indicating that AEME is more than just a biological marker for crack cocaine consumption, as it may intensify and hasten cocaine neurotoxicity.


Asunto(s)
Cocaína/análogos & derivados , Animales , Cocaína/toxicidad , Cromatografía de Gases y Espectrometría de Masas , Hipocampo , Neuronas , Síndromes de Neurotoxicidad , Pirólisis , Ratas
12.
Handb Exp Pharmacol ; 265: 269-301, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32548785

RESUMEN

The landscape of cancer treatment has improved over the past decades, aiming to reduce systemic toxicity and enhance compatibility with the quality of life of the patient. However, at the therapeutic level, metastatic cancer remains hugely challenging, based on the almost inevitable emergence of therapy resistance. A small subpopulation of cells able to survive drug treatment termed the minimal residual disease may either harbor resistance-associated mutations or be phenotypically resistant, allowing them to regrow and become the dominant population in the therapy-resistant tumor. Characterization of the profile of minimal residual disease represents the key to the identification of resistance drivers that underpin cancer evolution. Therapeutic regimens must, therefore, be dynamic and tailored to take into account the emergence of resistance as tumors evolve within a complex microenvironment in vivo. This requires the adoption of new technologies based on the culture of cancer cells in ways that more accurately reflect the intratumor microenvironment, and their analysis using omics and system-based technologies to enable a new era in the diagnostics, classification, and treatment of many cancer types by applying the concept "from the cell plate to the patient." In this chapter, we will present and discuss 3D model building and use, and provide comprehensive information on new genomic techniques that are increasing our understanding of drug action and the emergence of resistance.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Desarrollo de Medicamentos , Humanos , Neoplasias/tratamiento farmacológico , Calidad de Vida , Biología de Sistemas , Microambiente Tumoral
13.
Invest New Drugs ; 38(3): 662-674, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31264068

RESUMEN

The aim of this study was to further evaluate the antitumoral effect of (PhSe)2-loaded polymeric nanocapsules (NC (PhSe)2) against a resistant melanoma cell line (SK-Mel-103) and develop a xanthan gum-based hydrogel intending the NC (PhSe)2 cutaneous application. For the in vitro evaluation, cells were incubated with free (PhSe)2 or NC (PhSe)2 (0.7-200 µM) and after 48 h the MTT assay, propidium iodide uptake (necrosis marker) and nitrite levels were assessed. The hydrogels were developed by thickening of the NC (PhSe)2 suspension or (PhSe)2 solution with xanthan gum and characterized in terms of average diameter, polydispersity index, pH, drug content, spreadability, rheological profiles and in vitro permeation in human skin. The results showed that NC (PhSe)2 provided a superior antitumoral effect in comparison to free (PhSe)2 (IC50 value of 47.43 µM and 65.05 µM, respectively) and increased the nitrite content. Both compound forms induced propidium iodide uptake, suggesting a necrosis-related pathway could be involved in the cytotoxic action of (PhSe)2. All hydrogels showed pH values around 7, drug content close to the theoretical values (5 mg/g) and mean diameter in the nanometric range. Besides, formulations were classified as non-Newtonian flow with pseudoplastic behavior and suitable spreadability factor. Skin permeation studies revealed that the compound content was higher for the nano-based hydrogel in the dermis layer, demonstrating its superior permeation, achieved by the compound encapsulation. It is the first report on an adequate formulation development for cutaneous application of NC (PhSe)2 that could be used as an adjuvant treatment in melanoma therapy.


Asunto(s)
Antineoplásicos/farmacología , Derivados del Benceno/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Melanoma Experimental/tratamiento farmacológico , Nanocápsulas/química , Compuestos de Organoselenio/farmacología , Polisacáridos Bacterianos/química , Animales , Antineoplásicos/química , Derivados del Benceno/química , Línea Celular , Humanos , Ratones , Compuestos de Organoselenio/química , Permeabilidad/efectos de los fármacos , Polímeros/química
14.
Pharmacol Res ; 159: 104998, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32535222

RESUMEN

Indoleamine 2,3-dioxygenase (IDO) is associated with the progression of many types of tumors, including melanoma. However, there is limited information about IDO modulation on tumor cell itself and the effect of BRAF inhibitor (BRAFi) treatment and resistance. Herein, IDO expression was analyzed in different stages of melanoma development and progression linked to BRAFi resistance. IDO expression was increased in primary and metastatic melanomas from patients' biopsies, especially in the immune cells infiltrate. Using a bioinformatics approach, we also identified an increase in the IDO mRNA in the vertical growth and metastatic phases of melanoma. Using in silico analyses, we found that IDO mRNA was increased in BRAFi resistance. In an in vitro model, IDO expression and activity induced by interferon-gamma (IFNγ) in sensitive melanoma cells was decreased by BRAFi treatment. However, cells that became resistant to BRAFi presented random IDO expression levels. Also, we identified that treatment with the IDO inhibitor, 1-methyltryptophan (1-MT), was able to reduce clonogenicity for parental and BRAFi-resistant cells. In conclusion, our results support the hypothesis that the decreased IDO expression in tumor cells is one of the many additional outcomes contributing to the therapeutic effects of BRAFi. Still, the IDO production changeability by the BRAFi-resistant cells reiterates the complexity of the response arising from resistance, making it not possible, at this stage, to associate IDO expression in tumor cells with resistance. On the other hand, the maintenance of 1-MT off-target effect endorses its use as an adjuvant treatment of melanoma that has become BRAFi-resistant.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Neoplasias Cutáneas/tratamiento farmacológico , Vemurafenib/farmacología , Línea Celular Tumoral , Bases de Datos Genéticas , Resistencia a Antineoplásicos/genética , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Melanoma/enzimología , Melanoma/genética , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/genética , Triptófano/análogos & derivados , Triptófano/farmacología
15.
Pharmacol Res ; 141: 63-72, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30550954

RESUMEN

Melanoma accounts for only 4% of malignant neoplasms of the skin, but is considered the most serious because it is highly deadly. Mutations in the MAPK (Ras-Raf-MEK-ERK) pathway is closely linked to the lack of control of cell proliferation. Especially in melanoma, this pathway has become a target for the development of oncogene-targeted therapies, such as the potent inhibitors of v-Raf murine sarcoma viral oncogene homolog B (BRAFi) and mitogen-activated protein kinase kinase (MEKi). Very high rates of response have been achieved, but most patients are relapsed due to the development of resistance, justifying the constant search for new therapeutic compounds. Early results from our group indicated that 4-nerolidylcatechol (4-NC), a catechol compound extracted from Pothomorphe umbellata, induces DNA damage, ROS production, increased p53 expression culminating in apoptosis in melanoma but with no data regarding the 4-NC effects in cells resistant to BRAFi or MEKi. Therefore, here we evaluated the role of 4-NC alone or in combination with BRAFi/MEKi in resistant melanoma cells. Double-resistant cells were generated and characterized by MAPK pathway reactivation. 4-NC alone or in combination (30 µM) with MAPK inhibitors was cytotoxic, inhibited colony formation and decreased invasiveness in two and three-dimensional cell culture models of treatment-naïve, BRAFi-resistant and BRAF/MEKi double-resistant melanoma cells. Apoptosis induction was demonstrated in resistant and double-resistant melanoma cell lines after 4-NC treatments. 4-NC showed important ability to induce apoptosis via Endoplasmatic Reticulum (ER) stress and specifically BiP and CHOP that had increased protein expression in all melanoma cell lines proving to be part of the ER stress pathway activation. CHOP knockdown slightly but enough increases cellular viability following 4-NC treatment indicating that apoptosis observed is partially dependent on CHOP. In summary, we show that 4-NC is a compound with activity against cutaneous melanoma, including resistant cells to clinically approved therapies.


Asunto(s)
Antineoplásicos/farmacología , Catecoles/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Humanos , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico
16.
Pharmacol Res ; 125(Pt B): 178-187, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28882690

RESUMEN

Melanoma is a highly invasive and metastatic cancer with high mortality rates and chemoresistance. Around 50% of melanomas are driven by activating mutations in BRAF that has led to the development of potent anti-BRAF inhibitors. However resistance to anti-BRAF therapy usually develops within a few months and consequently there is a need to identify alternative therapies that will bypass BRAF inhibitor resistance. The curcumin analogue DM-1 (sodium 4-[5-(4-hydroxy-3-methoxy-phenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate) has substantial anti-tumor activity in melanoma, but its mechanism of action remains unclear. Here we use a synthetic lethal genetic screen in Saccharomyces cerevisiae to identify 211 genes implicated in sensitivity to DM-1 toxicity. From these 211 genes, 74 had close human orthologues implicated in oxidative phosphorylation, insulin signaling and iron and RNA metabolism. Further analysis identified 7 target genes (ADK, ATP6V0B, PEMT, TOP1, ZFP36, ZFP36L1, ZFP36L2) with differential expression during melanoma progression implicated in regulation of tumor progression, cell differentiation, and epithelial-mesenchymal transition. Of these TOP1 and ADK were regulated by DM-1 in treatment-naïve and vemurafenib-resistant melanoma cells respectively. These data reveal that the anticancer effect of curcumin analogues is likely to be mediated via multiple targets and identify several genes that represent candidates for combinatorial targeting in melanoma.


Asunto(s)
Curcumina/análogos & derivados , Curcumina/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Melanoma/genética , Saccharomyces cerevisiae/genética , Línea Celular Tumoral , Biología Computacional , Humanos , Mutación , Toxicogenética
17.
Pharmacol Res ; 111: 523-533, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27436149

RESUMEN

The BRAF(V600E) mutation confers constitutive kinase activity and accounts for >90% of BRAF mutations in melanoma. This genetic alteration is a current therapeutic target; however, the antitumorigenic effects of the BRAF(V600E) inhibitor vemurafenib are short-lived and the majority of patients present tumor relapse in a short period after treatment. Characterization of vemurafenib resistance has been essential to the efficacy of next generation therapeutic strategies. Herein, we found that acute BRAF inhibition induced a decrease in active MMP-2, MT1-MMP and MMP-9, but did not modulate the metalloproteinase inhibitors TIMP-2 or RECK in naïve melanoma cells. In vemurafenib-resistant melanoma cells, we observed a lower growth rate and an increase in EGFR phosphorylation followed by the recovery of active MMP-2 expression, a mediator of cancer metastasis. Furthermore, we found a different profile of MMP inhibitor expression, characterized by TIMP-2 downregulation and RECK upregulation. In a 3D spheroid model, the invasion index of vemurafenib-resistant melanoma cells was more evident than in its non-resistant counterpart. We confirmed this pattern in a matrigel invasion assay and demonstrated that use of a matrix metalloproteinase inhibitor reduced the invasion of vemurafenib resistant melanoma cells but not drug naïve cells. Moreover, we did not observe a delimited group of cells invading the dermis in vemurafenib-resistant melanoma cells present in a reconstructed skin model. The same MMP-2 and RECK upregulation profile was found in this 3D skin model containing vemurafenib-resistant melanoma cells. Acute vemurafenib treatment induces the disorganization of collagen fibers and consequently, extracellular matrix remodeling, with this pattern observed even after the acquisition of resistance. Altogether, our data suggest that resistance to vemurafenib induces significant changes in the tumor microenvironment mainly by MMP-2 upregulation, with a corresponding increase in cell invasiveness.


Asunto(s)
Antineoplásicos/farmacología , Indoles/farmacología , Metaloproteinasa 2 de la Matriz/metabolismo , Melanoma/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Sulfonamidas/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos/fisiología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Interleucina-8/metabolismo , Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Melanoma/genética , Melanoma/metabolismo , Invasividad Neoplásica , Proteínas Proto-Oncogénicas B-raf/genética , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Microambiente Tumoral/efectos de los fármacos , Regulación hacia Arriba , Vemurafenib
18.
Biochim Biophys Acta ; 1846(2): 576-89, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25453366

RESUMEN

While persistent infection with oncogenic types of human Papillomavirus (HPV) is required for cervical epithelial cell transformation and cervical carcinogenesis, HPV infection alone is not sufficient to induce tumorigenesis. Only a minor fraction of HPV infections produce high-grade lesions and cervical cancer, suggesting complex host-virus interactions. Based on its pronounced immunoinhibitory properties, human leukocyte antigen (HLA)-G has been proposed as a possible prognostic biomarker and therapeutic target relevant in a wide variety of cancers and viral infections, but to date remains underexplored in cervical cancer. Given the possible influence of HLA-G on the clinical course of HPV infection, cervical lesions and cancer progression, a better understanding of HLA-G involvement in cervical carcinogenesis might contribute to two aspects of fundamental importance: 1. Characterization of a novel diagnostic/prognostic biomarker to identify cervical cancer and to monitor disease stage, critical for patient screening; 2. Identification of HLA-G-driven immune mechanisms involved in lesion development and cancer progression, leading to the development of strategies for modulating HLA-G expression for treatment purposes. Thus, this systematic review explores the potential involvement of HLA-G protein expression and polymorphisms in cervical carcinogenesis.


Asunto(s)
Antígenos HLA-G/fisiología , Neoplasias del Cuello Uterino/inmunología , Femenino , Antígenos HLA-G/genética , Humanos , Polimorfismo Genético , Pronóstico , Neoplasias del Cuello Uterino/etiología , Neoplasias del Cuello Uterino/terapia
19.
Front Physiol ; 15: 1347414, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487263

RESUMEN

Solar radiation can cause damage to the skin, and the use of sunscreens is one of the main protective measures. However, photounstable ultraviolet (UV) filters can generate photoproducts and reactive oxygen species (ROS). Adding antioxidants, such as resveratrol, to enhance the action of UV filters in sunscreens is an interesting strategy for reducing the damage caused by UV radiation exposure. However, new compounds must have their stability, safety and efficacy guaranteed. Avobenzone, a commonly used UV filter, stands out as a promising candidate for structural modification to enhance its stability. Its molecular hybridization with other UV filters and antioxidants can lead to safer and more effective compounds. In this study, the photoprotective and antioxidant potential of a derivative of avobenzone, hybridized with resveratrol's molecule, was evaluated using in vitro models of cells in monolayer and reconstructed human skin (RHS). Phototoxic potential was assessed using fibroblasts, while the antioxidant activity was measured using the DCFH2-DA probe in HaCaT keratinocytes and in-house RHS. The derivative exhibited UV absorption and demonstrated photostability. It did not exhibit any phototoxic nor photoreactivity potential. Additionally, it was able to photo stabilize a combination of photounstable UV filters, avobenzone and octyl methoxycinnamate, and to reduce their phototoxic potential. In terms of antioxidant activity, the derivative successfully protected against UVA-induced ROS production in the HaCaT keratinocytes model, showing statistical equivalence to the antioxidant control, quercetin (10 µg/mL). Furthermore, experiments conducted in the RHS model demonstrated a significant reduction of 30.7% in ROS generation compared to the irradiated control. This study demonstrated that structural modifications of avobenzone can lead to the development of a broad spectrum (absorbing UVB and UVA II radiation, as well as a portion of the UVA I radiation), non-phototoxic, non-photoreactive and photostable derivative for sunscreen and anti-aging formulations. This derivative enhances protection against oxidative stress induced by UV radiation and improves the effectiveness of sun protection. In addition to the monolayer model, the use of a standardized in-house RHS model was highly relevant for evaluating the effects of UV radiation and skin aging. This model closely mimics human physiological conditions and enables the testing of new compounds and the investigation of protective mechanisms against skin damage.

20.
Biomed Pharmacother ; 177: 116953, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955087

RESUMEN

The second most common mutation in melanoma occurs in NRAS oncogene, being a more aggressive disease that has no effective approved treatment. Besides, cellular plasticity limits better outcomes of the advanced and therapy-resistant patients. Peroxiredoxins (PRDXs) control cellular processes through direct hydrogen peroxide oxidation or by redox-relaying processes. Here, we demonstrated that PRDX2 could act as a modulator of multiple EMT markers in NRAS-mutated melanomas. PRDX2 knockdown lead to phenotypic changes towards invasion in human reconstructed skin and the treatment with a PRDX mimetic (gliotoxin), decreased migration in PRDX2-deficient cells. We also confirmed the favorable clinical outcome of patients expressing PRDX2 in a large primary melanoma cohort. This study contributes to our knowledge about genes involved in phenotype switching and opens a new perspective for PRDX2 as a biomarker and target in NRAS-mutated melanomas.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda