Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Plant Cell Environ ; 44(8): 2716-2728, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33721328

RESUMEN

Ground-level ozone is a global air pollutant with high toxicity and represents a threat to plants and microorganisms. Although beneficial microorganisms can improve host performance, their role in connecting environmentally induced maternal plant phenotypes to progeny (transgenerational effects [TGE]) is unknown. We evaluated fungal endophyte-mediated consequences of maternal plant exposure to ozone on performance of the progeny under contrasting scenarios of the same factor (high and low) at two stages: seedling and young plant. With no variation in biomass, maternal ozone-induced oxidative damage in the progeny that was lower in endophyte-symbiotic plants. This correlated with an endophyte-mediated higher concentration of proline, a defence compound associated with stress control. Interestingly, ozone-induced TGE was not associated with reductions in plant survival. On the contrary, there was an overall positive effect on seedling survival in the presence of endophytes. The positive effect of maternal ozone increasing young plant survival was irrespective of symbiosis and only expressed under high ozone condition. Our study shows that hereditary microorganisms can modulate the capacity of plants to transgenerationally adjust progeny phenotype to atmospheric change.


Asunto(s)
Endófitos/fisiología , Epichloe/fisiología , Lolium/fisiología , Ozono , Biomasa , Lolium/efectos de los fármacos , Lolium/microbiología , Ozono/farmacología , Plantones/fisiología , Simbiosis
2.
Environ Res ; 202: 111773, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34324850

RESUMEN

Tropospheric ozone is among the global change factors that pose a threat to plants and microorganisms. Symbiotic microorganisms can assist plants to cope with stress, but their role in the tolerance of plants to ozone is poorly understood. Here, we subjected endophyte-symbiotic and non-symbiotic plants of Lolium multiflorum, an annual species widely distributed in temperate grasslands, to high and low (i.e., charcoal-filtered air) ozone levels at vegetative and reproductive phases. Exposure to high ozone reduced leaf photochemical efficiency and greenness in both symbiotic and non-symbiotic plants. However, ozone-induced oxidative damage at biochemical level (i.e., lipid peroxidation) was mostly detected in symbiotic plants. Ozone exposure at the vegetative phase did not affect the reproductive investment in seeds, indicating full recovery from stress. Ozone exposure at the reproductive phase reduced biomass and seed production only in symbiotic plants indicating a symbiont-associated cost. At low ozone, endophyte-symbiotic plants showed a steeper slope in the relationship between seed number and seed weight (i.e., a number-weight trade-off) compared to non-symbiotic plants. However, when plants were treated at the reproductive phase, ozone increased the imbalance between seed number and seed weight in both endophyte-symbiotic and non-symbiotic plants. Plants with endophytes at the reproductive stage produced fewer seeds, which were not compensated by increased seed weight. Thus, fungal mycelium growing within ovaries or ozone-induced antioxidant systems may result in costs that finally depress the fitness of plants. Despite ozone pollution could destabilize plant-endophyte mutualisms and render them dysfunctional, other endophyte-mediated benefits (e.g., resistance to herbivory, tolerance to drought) could over-compensate these losses and explain the high incidence of the symbiosis in nature.


Asunto(s)
Epichloe , Lolium , Ozono , Endófitos , Ozono/toxicidad , Semillas
3.
Environ Pollut ; 269: 116117, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33272799

RESUMEN

Driven by human activities, air pollution and soil degradation are threatening food production systems. Rising ozone in the troposphere can affect several physiological processes in plants and their interaction with symbiotic microorganisms. Plant responses to ozone may depend on both soil fertility and the ontogenetic stage in which they are exposed. In this work, we studied the effects of ozone episodes and soil fertility on soybean plants. We analysed soybean plant responses in the production of aboveground and belowground biomass, structural and functional attributes of rhizobia, and seed production and quality. The experiment was performed with plants grown in two substrates with different fertility (commercial soil, and soil diluted (50%, v/v) with sand). Plants were exposed to acute episodes of ozone during vegetative and reproductive stages. We observed that ozone significantly reduced belowground biomass (≈25%), nodule biomass (≈30%), and biological nitrogen fixation (≈21%). Plants exposed to ozone during reproductive stage growing in soil with reduced fertility had lower seed production (≈10% lower) and seed protein (≈12% lower). These responses on yield and quality can be explained by the observed changes in belowground biomass and nitrogen fixation. The negative impact of ozone on the symbiotic interaction with rhizobia, seed production and quality in soybean plants were greater in soils with reduced fertility. Our results indicate that food security could be at risk in the future if trends in ozone concentration and soil degradation processes continue to increase.


Asunto(s)
Glycine max , Ozono , Humanos , Fijación del Nitrógeno , Ozono/toxicidad , Semillas , Suelo
4.
Insects ; 11(9)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32824905

RESUMEN

Plants are challenged by biotic and abiotic stress factors and the incidence of one can increase or decrease resistance to another. These relations can also occur transgenerationally. For instance, progeny plants whose mothers experienced herbivory can be more resistant to herbivores. Certain fungal endophytes that are vertically transmitted endow plants with alkaloids and resistance to herbivores. However, endophyte-symbiotic plants exposed to the oxidative agent ozone became susceptible to aphids. Here, we explored whether this effect persists transgenerationally. We exposed Lolium multiflorum plants with and without fungal endophyte Epichloë occultans to ozone (120 or 0 ppb), and then, challenged the progeny with aphids (Rhopalosiphum padi). The endophyte was the main factor determining the resistance to aphids, but its importance diminished in plants with ozone history. This negative ozone effect on the endophyte-mediated resistance was apparent on aphid individual weights. Phenolic compounds in seeds were increased by the symbiosis and diminished by the ozone. The endophyte effect on phenolics vanished in progeny plants while the negative ozone effect persisted. Independently of ozone, the symbiosis increased the plant biomass (≈24%). Although ozone can diminish the importance of endophyte symbiosis for plant resistance to herbivores, it would be compensated by host growth stimulation.

5.
Proc Biol Sci ; 275(1637): 897-905, 2008 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-18198146

RESUMEN

Persistence and ubiquity of vertically transmitted Neotyphodium endophytes in grass populations is puzzling because infected plants do not consistently exhibit increased fitness. Using an annual grass population model, we show that the problems for matching endophyte infection and mutualism are likely to arise from difficulties in detecting small mutualistic effects, variability in endophyte transmission efficiency and an apparent prevalence of non-equilibrium in the dynamics of infection. Although endophytes would ultimately persist only if the infection confers some fitness increase to the host plants, such an increase can be very small, as long as the transmission efficiency is sufficiently high. In addition, imperfect transmission limits effectively the equilibrium infection level if the infected plants exhibit small or large reproductive advantage. Under frequent natural conditions, the equilibrium infection level is very sensitive to small changes in transmission efficiency and host reproductive advantage, while convergence to such an equilibrium is slow. As a consequence, seed immigration and environmental fluctuation are likely to keep local infection levels away from equilibrium. Transient dynamics analysis suggests that, when driven by environmental fluctuation, infection frequency increases would often be larger than decreases. By contrast, when due to immigration, overrepresentation of infected individuals tends to vanish faster than equivalent overrepresentation of non-infected individuals.


Asunto(s)
Hongos/fisiología , Poaceae/microbiología , Simbiosis , Modelos Biológicos , Factores de Tiempo
6.
Trends Plant Sci ; 22(11): 939-948, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28923242

RESUMEN

Although the role of fungal alkaloids in protecting grasses associated with Epichloë fungal endophytes has been extensively documented, the effects of the symbiont on the host plant's immune responses have received little attention. We propose that, in addition to producing protective alkaloids, endophytes enhance plant immunity against chewing insects by promoting endogenous defense responses mediated by the jasmonic acid (JA) pathway. We advance a model that integrates this dual effect of endophytes on plant defenses and test its predictions by means of a standard meta-analysis. This analysis supports a role of Epichloë endophytes in boosting JA-mediated plant defenses. We discuss the ecological scenarios where this effect of endophytes on plant defenses would be most beneficial for increasing plant fitness.


Asunto(s)
Endófitos/fisiología , Epichloe/fisiología , Herbivoria , Fenómenos Fisiológicos de las Plantas , Plantas/microbiología , Animales , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Insectos , Oxilipinas/metabolismo , Inmunidad de la Planta , Simbiosis
7.
PLoS One ; 12(8): e0182796, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28796821

RESUMEN

Information on whole community responses is needed to predict direction and magnitude of changes in plant and animal abundance under global changes. This study quantifies the effect of past ozone exposure on a weed community structure and arthropod colonization. We used the soil seed bank resulting from a long-term ozone exposure to reestablish the plant community under a new low-pollution environment. Two separate experiments using the same original soil seed bank were conducted. Plant and arthropod richness and species abundance was assessed during two years. We predicted that exposure to episodic high concentrations of ozone during a series of growing cycles would result in plant assemblies with lower diversity (lower species richness and higher dominance), due to an increase in dominance of the stress tolerant species and the elimination of the ozone-sensitive species. As a consequence, arthropod-plant interactions would also be changed. Species richness of the recruited plant communities from different exposure histories was similar (≈ 15). However, the relative abundance of the dominant species varied according to history of exposure, with two annual species dominating ozone enriched plots (90 ppb: Spergula arvensis, and 120 ppb: Calandrinia ciliata). Being consistent both years, the proportion of carnivore species was significantly higher in plots with history of higher ozone concentration (≈3.4 and ≈7.7 fold higher in 90 ppb and 120 ppb plots, respectively). Our study provides evidence that, past history of pollution might be as relevant as management practices in structuring agroecosystems, since we show that an increase in tropospheric ozone may influence biotic communities even years after the exposure.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Ozono/toxicidad , Malezas/efectos de los fármacos , Animales , Argentina , Artrópodos/fisiología , Atmósfera , Biodiversidad , Cadena Alimentaria , Dispersión de las Plantas , Malezas/crecimiento & desarrollo , Malezas/parasitología , Dinámica Poblacional
8.
J Environ Qual ; 33(4): 1376-86, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15254120

RESUMEN

Ultraviolet-B radiation is an environmental stress for plants and this situation could become aggravated in the next decades. In this study we used Italian ryegrass (Lolium multiflorum Lam.) as a model system to test whether an environmental stress derived from global change, such as UVB, can influence the efficacy of control procedures and evolution toward herbicide resistance. We grew three generations of Italian ryegrass plants with and without UVB light and subjected them to a series of diclofop-methyl [(+/-)-2-[4-(2,4-dichlorophenoxy) phenoxy] propanoic acid, methyl ester] doses. The effect of selection history was tested with herbicide dose response. The effect of herbicide application on plant survival and biomass varied significantly among herbicide doses and with absence or presence of UVB light. In the absence of herbicide, the decrease in individual fecundity with increasing plant density was similar under both no-UVB and UVB light treatments. Only plants growing without UVB light increased production of reproductive structures in response to the decrease in density caused by herbicide application. Our study shows that UVB light was a weak stress factor for the ryegrass plants. However, when herbicide selection pressure was high, UVB light reduced the evolution toward herbicide tolerance. When selection pressure on the parental plants was lower, the two stress factors had a synergistic effect, causing changes in herbicide efficacy that in turn had demographic and evolutionary consequences. In the field, these interactions between stress factors might be of significance for annual weeds in which seed output is a major determinant in fitness.


Asunto(s)
Herbicidas/farmacología , Lolium/crecimiento & desarrollo , Modelos Teóricos , Éteres Fenílicos/farmacología , Rayos Ultravioleta/efectos adversos , Evolución Biológica , Resistencia a Medicamentos , Germinación , Éteres Difenilos Halogenados , Italia , Semillas/crecimiento & desarrollo , Selección Genética
10.
PLoS One ; 8(9): e75820, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086640

RESUMEN

Tropospheric ozone is one of the major drivers of global change. This stress factor alters plant growth and development. Ozone could act as a selection pressure on species communities composition, but also on population genetic background, thus affecting life history traits. Our objective was to evaluate the consequences of prolonged ozone exposure of a weed community on phenotypic traits of Spergulaarvensis linked to persistence. Specifically, we predicted that the selection pressure exerted by high ozone concentrations as well as the concomitant changes in the weed community would drive population adaptive changes which will be reflected on seed germination, dormancy and longevity. In order to test seed viability and dormancy level, we conducted germination experiments for which we used seeds produced by S. arvensis plants grown within a weed community exposed to three ozone treatments during four years (0, 90 and 120 ppb). We also performed a soil seed bank experiment to test seed longevity with seeds coming from both the four-year ozone exposure experiment and from a short-term treatment conducted at ambient and added ozone concentrations. We found that prolonged ozone exposure produced changes in seed germination, dormancy and longevity, resulting in three S. arvensis populations. Seeds from the 90 ppb ozone selection treatment had the highest level of germination when stored at 75% RH and 25 °C and then scarified. These seeds showed the lowest dormancy level when being subjected to 5 ºC/5% RH and 25 ºC/75% followed by 5% RH storage conditions. Furthermore, ozone exposure increased seed persistence in the soil through a maternal effect. Given that tropospheric ozone is an important pollutant in rural areas, changes in seed traits due to ozone exposure could increase weed persistence in fields, thus affecting weed-crop interactions, which could ultimately reduce crop production.


Asunto(s)
Caryophyllaceae/crecimiento & desarrollo , Caryophyllaceae/fisiología , Ozono/efectos adversos , Malezas/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Germinación/fisiología , Desarrollo de la Planta/fisiología , Latencia en las Plantas/fisiología , Malezas/fisiología , Semillas/fisiología , Suelo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda