Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791253

RESUMEN

The application of metal-based nanoparticles (mNPs) in cancer therapy and diagnostics (theranostics) has been a hot research topic since the early days of nanotechnology, becoming even more relevant in recent years. However, the clinical translation of this technology has been notably poor, with one of the main reasons being a lack of understanding of the disease and conceptual errors in the design of mNPs. Strikingly, throughout the reported studies to date on in vivo experiments, the concepts of "tumor targeting" and "tumor cell targeting" are often intertwined, particularly in the context of active targeting. These misconceptions may lead to design flaws, resulting in failed theranostic strategies. In the context of mNPs, tumor targeting can be described as the process by which mNPs reach the tumor mass (as a tissue), while tumor cell targeting refers to the specific interaction of mNPs with tumor cells once they have reached the tumor tissue. In this review, we conduct a critical analysis of key challenges that must be addressed for the successful targeting of either tumor tissue or cancer cells within the tumor tissue. Additionally, we explore essential features necessary for the smart design of theranostic mNPs, where 'smart design' refers to the process involving advanced consideration of the physicochemical features of the mNPs, targeting motifs, and physiological barriers that must be overcome for successful tumor targeting and/or tumor cell targeting.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Nanomedicina Teranóstica , Humanos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico , Neoplasias/patología , Nanomedicina Teranóstica/métodos , Animales , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos
2.
Cell Commun Signal ; 21(1): 108, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170098

RESUMEN

BACKGROUND: The primary goal of radiotherapy (RT) is to induce cellular damage on malignant cells; however, it is becoming increasingly recognized the important role played by the tumor microenvironment (TME) in therapy outcomes. Therapeutic irradiation of tumor lesions provokes profound cellular and biological reconfigurations within the TME that ultimately may influence the fate of the therapy. MAIN CONTENT: Cancer-associated fibroblasts (CAFs) are known to participate in all stages of cancer progression and are increasingly acknowledged to contribute to therapy resistance. Accumulated evidence suggests that, upon radiation, fibroblasts/CAFs avoid cell death but instead enter a permanent senescent state, which in turn may influence the behavior of tumor cells and other components of the TME. Despite the proposed participation of senescent fibroblasts on tumor radioprotection, it is still incompletely understood the impact that RT has on CAFs and the ultimate role that irradiated CAFs have on therapy outcomes. Some of the current controversies may emerge from generalizing observations obtained using normal fibroblasts and CAFs, which are different cell entities that may respond differently to radiation exposure. CONCLUSION: In this review we present current knowledge on the field of CAFs role in radiotherapy; we discuss the potential tumorigenic functions of radiation-induced senescent fibroblasts and CAFs and we make an effort to integrate the knowledge emerging from preclinical experimentation with observations from the clinics. Video Abstract.


Radiotherapy (RT) is currently used to treat more than 50% of all diagnosed cancer cases and counts for around 40% of all cure rates. The primary goal of RT has always been to induce damage on tumor cells; thus, it has been traditionally believed that the therapeutic efficacy of RT is mediated exclusively by its capacity to directly kill malignant cells. However, tumors are complex tissues composed of multiple cellular and acellular elements often referred as the tumor microenvironment (TME) or tumor stroma. Both, the malignant and the non-malignant cells in tumors receive the same prescribed radiation dose during treatment. In recent years, it has become more and more evident the fundamental role played by elements of the TME on therapy outcomes. One of the most abundant and influential elements of the reactive stroma in tumors are cancer-associated fibroblasts (CAFs). CAFs are also exposed to the full prescribed radiation dose during the course of radiotherapy. Accumulated evidence suggests that, upon radiation, fibroblasts/CAFs avoid cell death but instead enter a permanent senescent (growth arrest) state, which in turn may influence the behavior of tumor cells and other components of the TME. Despite the proposed participation of senescent fibroblasts on tumor radioprotection, it is still incompletely understood the impact that RT has on CAFs and the ultimate role that irradiated CAFs have on therapy outcomes. Further research using appropriate experimental models to study CAFs, and more information from clinical research is needed to unveil the ultimate role played by CAFs on radiotherapy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , Fibroblastos Asociados al Cáncer/patología , Neoplasias/patología , Fibroblastos/metabolismo , Carcinogénesis/patología , Muerte Celular , Microambiente Tumoral
3.
J Transl Med ; 19(1): 437, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663337

RESUMEN

Radiotherapy (RT) still represents a mainstay of treatment in clinical oncology. Traditionally, the effectiveness of radiotherapy has been attributed to the killing potential of ionizing radiation (IR) over malignant cells, however, it has become clear that therapeutic efficacy of RT also involves activation of innate and adaptive anti-tumor immune responses. Therapeutic irradiation of the tumor microenvironment (TME) provokes profound cellular and biological reconfigurations which ultimately may influence immune recognition. As one of the major constituents of the TME, cancer-associated fibroblasts (CAFs) play central roles in cancer development at all stages and are recognized contributors of tumor immune evasion. While some studies argue that RT affects CAFs negatively through growth arrest and impaired motility, others claim that exposure of fibroblasts to RT promotes their conversion into a more activated phenotype. Nevertheless, despite the well-described immunoregulatory functions assigned to CAFs, little is known about the interplay between CAFs and immune cells in the context of RT. In this review, we go over current literature on the effects of radiation on CAFs and the influence that CAFs have on radiotherapy outcomes, and we summarize present knowledge on the transformed cellular crosstalk between CAFs and immune cells after radiation.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Fibroblastos , Humanos , Neoplasias/radioterapia , Radiación Ionizante , Microambiente Tumoral
4.
BMC Musculoskelet Disord ; 20(1): 19, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30630436

RESUMEN

BACKGROUND: Autologous chondrocyte implantation (ACI) has been used over the last two decades to treat focal cartilage lesions aiming to delay or prevent the onset of osteoarthritis; however, some patients do not respond adequately to the procedure. A number of biomarkers that can forecast the clinical potency of the cells have been proposed, but evidence for the relationship between in vitro chondrogenic potential and clinical outcomes is missing. In this study, we explored if the ability of cells to make cartilage in vitro correlates with ACI clinical outcomes. Additionally, we evaluated previously proposed chondrogenic biomarkers and searched for new biomarkers in the chondrocyte proteome capable of predicting clinical success or failure after ACI. METHODS: The chondrogenic capacity of chondrocytes derived from 14 different donors was defined based on proteoglycans staining and visual histological grading of tissues generated using the pellet culture system. A Lysholm score of 65 two years post-ACI was used as a cut-off to categorise "success" and "failure" clinical groups. A set of predefined biomarkers were investigated in the chondrogenic and clinical outcomes groups using flow cytometry and qPCR. High-throughput proteomics of cell lysates was used to search for putative biomarkers to predict chondrogenesis and clinical outcomes. RESULTS: Visual histological grading of pellets categorised donors into "high" and "low" chondrogenic groups. Direct comparison between donor-matched in vitro chondrogenic potential and clinical outcomes revealed no significant associations. Comparative analyses of selected biomarkers revealed that expression of CD106 and TGF-ß-receptor-3 was enhanced in the low chondrogenic group, while expression of integrin-α1 and integrin-ß1 was significantly upregulated in the high chondrogenic group. Additionally, increased surface expression of CD166 was observed in the clinical success group, while the gene expression of cartilage oligomeric matrix protein was downregulated. High throughput proteomics revealed no differentially expressed proteins from success and failure clinical groups, whereas seven proteins including prolyl-4-hydroxylase 1 were differentially expressed when comparing chondrogenic groups. CONCLUSION: In our limited material, we found no correlation between in vitro cartilage-forming capacity and clinical outcomes, and argue on the limitations of using the chondrogenic potential of cells or markers for chondrogenesis as predictors of clinical outcomes.


Asunto(s)
Artralgia/diagnóstico , Autoinjertos/trasplante , Condrocitos/trasplante , Condrogénesis , Osteoartritis/terapia , Adulto , Artralgia/etiología , Artralgia/terapia , Biomarcadores/análisis , Biomarcadores/metabolismo , Cartílago Articular/citología , Diferenciación Celular , Separación Celular , Células Cultivadas , Condrocitos/metabolismo , Femenino , Citometría de Flujo , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis/complicaciones , Osteoartritis/diagnóstico , Dimensión del Dolor , Pronóstico , Proteómica , Índice de Severidad de la Enfermedad , Trasplante Autólogo , Resultado del Tratamiento , Adulto Joven
5.
Reprod Biol Endocrinol ; 15(1): 28, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28427432

RESUMEN

BACKGROUND: Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a bleeding disorder caused by maternal antibodies against paternal human platelet antigens (HPAs) on fetal platelets. Antibodies against HPA-1a are accountable for the majority of FNAIT cases. We have previously shown that high levels of maternal anti-HPA-1a antibodies are associated with clinically significant reduced birth weight in newborn boys. Chronic inflammatory placental lesions are associated with increased risk of reduced birth weight and have previously been reported in connection with FNAIT pregnancies. The HPA-1a epitope is located on integrin ß3 that is associated with integrin αIIb (the fibrinogen receptor) on platelets and megakaryocytes. Integrin ß3 is also associated with integrin αV forming the αVß3 integrin heterodimer, the vitronectin receptor, which is expressed on various cell types, including trophoblast cells. It is therefore thinkable that maternal anti-HPA-1a antibodies present during early pregnancy may affect placenta function through binding to the HPA-1a antigen epitope on invasive throphoblasts. The aim of the study was to examine whether interaction of a human anti-HPA-1a monoclonal antibody (mAb) with HPA-1a on trophoblast cells affect adhesion, migration and invasion of extravillous trophoblast cells. METHODS: An in vitro model with human anti-HPA-1a mAb, clone 26.4, and the first trimester extravillous trophoblast cell line HTR8/SVneo was employed. The xCELLigence system was utilized to assess the possible effect of anti-HPA-1a mAb on adhesion and migration of HTR8/SVneo cells. Specially designed chambers precoated with Matrigel were used to assess the effect on the invasive capacity of cells. RESULTS: We found that human anti-HPA-1a mAb 26.4 partially inhibits adhesion and migratory capacity of HTR8/SVneo cells. CONCLUSIONS: Our findings suggest that anti-HPA-1a antibodies may affect trophoblast functions crucial for normal placental development. Future studies including primary throphoblast cells and polyclonal anti-HPA-1a antibodies are needed to confirm these results.


Asunto(s)
Antígenos de Plaqueta Humana/metabolismo , Autoanticuerpos/metabolismo , Placenta/citología , Placenta/metabolismo , Trofoblastos/metabolismo , Adhesión Celular/fisiología , Línea Celular Transformada , Movimiento Celular/fisiología , Femenino , Humanos , Integrina beta3 , Embarazo , Unión Proteica/fisiología
6.
BMC Cancer ; 17(1): 350, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28526008

RESUMEN

BACKGROUND: Urokinase plasminogen activator (uPA) receptor (uPAR) is up-regulated at the invasive tumour front of human oral squamous cell carcinoma (OSCC), indicating a role for uPAR in tumour progression. We previously observed elevated expression of uPAR at the tumour-stroma interface in a mouse model for OSCC, which was associated with increased proteolytic activity. The tumour microenvironment regulated uPAR expression, as well as its glycosylation and cleavage. Both full-length- and cleaved uPAR (uPAR (II-III)) are involved in highly regulated processes such as cell signalling, proliferation, migration, stem cell mobilization and invasion. The aim of the current study was to analyse tumour associated factors and their effect on uPAR cleavage, and the potential implications for cell proliferation, migration and invasion. METHODS: Mouse uPAR was stably overexpressed in the mouse OSCC cell line AT84. The ratio of full-length versus cleaved uPAR as analysed by Western blotting and its regulation was assessed by addition of different protease inhibitors and transforming growth factor - ß1 (TGF-ß1). The role of uPAR cleavage in cell proliferation and migration was analysed using real-time cell analysis and invasion was assessed using the myoma invasion model. RESULTS: We found that when uPAR was overexpressed a proportion of the receptor was cleaved, thus the cells presented both full-length uPAR and uPAR (II-III). Cleavage was mainly performed by serine proteases and urokinase plasminogen activator (uPA) in particular. When the OSCC cells were stimulated with TGF-ß1, the production of the uPA inhibitor PAI-1 was increased, resulting in a reduction of uPAR cleavage. By inhibiting cleavage of uPAR, cell migration was reduced, and by inhibiting uPA activity, invasion was reduced. We could also show that medium containing soluble uPAR (suPAR), and cleaved soluble uPAR (suPAR (II-III)), induced migration in OSCC cells with low endogenous levels of uPAR. CONCLUSIONS: These results show that soluble factors in the tumour microenvironment, such as TGF-ß1, PAI-1 and uPA, can influence the ratio of full length and uPAR (II-III) and thereby potentially effect cell migration and invasion. Resolving how uPAR cleavage is controlled is therefore vital for understanding how OSCC progresses and potentially provides new targets for therapy.


Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias de la Boca/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Factor de Crecimiento Transformador beta1/genética , Animales , Carcinoma de Células Escamosas/patología , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Neoplasias de la Boca/patología , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Transducción de Señal , Microambiente Tumoral/genética
7.
J Anat ; 226(3): 268-77, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25677035

RESUMEN

Leukotriene B4 (LTB4) is a potent chemoattractant associated with the development of osteoarthritis (OA), while its receptors BLT1 and BLT2 have been found in synovium and subchondral bone. In this study, we have investigated whether these receptors are also expressed by human cartilage cells and their potential effects on cartilage cells. The expression of LTB4 receptors in native tissue and cultured cells was assessed by immunohistochemistry, immunocytochemistry, polymerase chain reaction (PCR) and electron microscopy. The functional significance of the LTB4 receptor expression was studied by Western blotting, using phospho-specific antibodies in the presence or absence of receptor antagonists. In further studies, the secretion of pro-inflammatory cytokines, growth factors and metalloproteinases by LTB4-stimulated chondrocytes was measured by multiplex protein assays. The effects of LTB4 in cartilage signature gene expression in cultured cells were assessed by quantitative PCR, whereas the LTB4-promoted matrix synthesis was determined using 3D pellet cultures. Both receptors were present in cultured chondrocytes, as was confirmed by immunolabelling and PCR. The relative quantification by PCR demonstrated a higher expression of the receptors in cells from healthy joints compared with OA cases. The stimulation of cultured chondrocytes with LTB4 resulted in a phosphorylation of downstream transcription factor Erk 1/2, which was reduced after blocking BLT1 signalling. No alteration in the secretion of cytokine and metalloproteinases was recorded after challenging cultured cells with LTB4; likewise, cartilage matrix gene expression and 3D tissue synthesis were unaffected. Chondrocytes express BLT1 and BLT2 receptors, and LTB4 activates the downstream Erk 1/2 pathway by engaging the high-affinity receptor BLT1. However, any putative role in cartilage biology could not be revealed, and remains to be clarified.


Asunto(s)
Cartílago Articular/metabolismo , Condrocitos/metabolismo , Osteoartritis/fisiopatología , Receptores de Leucotrieno B4/fisiología , Anciano , Western Blotting , Células Cultivadas , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , ARN Mensajero/metabolismo , Receptores de Leucotrieno B4/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Cancer Rep (Hoboken) ; 7(3): e2018, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38488488

RESUMEN

BACKGROUND: Cancer-associated fibroblasts (CAFs) consist of heterogeneous connective tissue cells and are often constituting the most abundant cell type in the tumor stroma. Radiation effects on tumor stromal components like CAFs in the context of radiation treatment is not well-described. AIM: This study explores potential changes induced by ionizing radiation (IR) on platelet-derived growth factor (PDGF)/PDGFRs and transforming growth factor-beta (TGF-ß)/TGFßRs signaling systems in CAFs. METHODS AND RESULTS: Experiments were carried out by employing primary cultures of human CAFs isolated from freshly resected non-small cell lung carcinoma tumor tissues. CAF cultures from nine donors were treated with one high (1 × 18 Gy) or three fractionated (3 × 6 Gy) radiation doses. Alterations in expression levels of TGFßRII and PDGFRα/ß induced by IR were analyzed by western blots and flow cytometry. In the presence or absence of cognate ligands, receptor activation was studied in nonirradiated and irradiated CAFs. Radiation exposure did not exert changes in expression of PDGF or TGF-ß receptors in CAFs. Additionally, IR alone was unable to trigger activation of either receptor. The radiation regimens tested did not affect PDGFRß signaling in the presence of PDGF-BB. In contrast, signaling via pSmad2/3 and pSmad1/5/8 appeared to be down-regulated in irradiated CAFs after stimulation with TGF-ß, as compared with controls. CONCLUSION: Our data demonstrate that IR by itself is insufficient to induce measurable changes in PDGF or TGF-ß receptor expression levels or to induce receptor activation in CAFs. However, in the presence of their respective ligands, exposure to radiation at certain doses appear to interfere with TGF-ß receptor signaling.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Fibroblastos/metabolismo , Fibroblastos/patología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Neoplasias/patología
10.
Front Immunol ; 15: 1433237, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39308864

RESUMEN

Introduction: Cancer-associated fibroblasts (CAFs) are abundant and influential elements of the tumor microenvironment (TME), giving support to tumor development in multiple ways. Among other mechanisms, CAFs are important regulators of immunological processes occurring in tumors. However, CAF-mediated tumor immunomodulation in the context of radiotherapy remains poorly understood. In this study, we explore effects of radiation on CAF-derived immunoregulatory signals to the TME. Methods: Primary CAF cultures were established from freshly collected human NSCLC lung tumors. CAFs were exposed to single-high or fractionated radiation regimens (1x18Gy or 3x6Gy), and the expression of different immunoregulatory cell-associated and secreted signaling molecules was analyzed 48h and 6 days after initiation of treatment. Analyses included quantitative measurements of released damage-associated molecular patterns (DAMPs), interferon (IFN) type I responses, expression of immune regulatory receptors, and secretion of soluble cytokines, chemokines, and growth factors. CAFs are able to survive ablative radiation regimens, however they enter into a stage of premature cell senescence. Results: Our data show that CAFs avoid apoptosis and do not contribute by release of DAMPs or IFN-I secretion to radiation-mediated tumor immunoregulation. Furthermore, the secretion of relevant immunoregulatory cytokines and growth factors including TGF-ß, IL-6, IL-10, TNFα, IL-1ß, VEGF, CXCL12, and CXCL10 remain comparable between non-irradiated and radiation-induced senescent CAFs. Importantly, radiation exposure modifies the cell surface expression of some key immunoregulatory receptors, including upregulation of CD73 and CD276. Discussion: Our data suggest that CAFs do not participate in the release of danger signals or IFN-I secretion following radiotherapy. The immune phenotype of CAFs and radiation-induced senescent CAFs is similar, however, the observed elevation of some cell surface immunological receptors on irradiated CAFs could contribute to the establishment of an enhanced immunosuppressive TME after radiotherapy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Citocinas , Neoplasias Pulmonares , Microambiente Tumoral , Humanos , Fibroblastos Asociados al Cáncer/inmunología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/efectos de la radiación , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de la radiación , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patología , Citocinas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Senescencia Celular/efectos de la radiación , Senescencia Celular/inmunología
11.
PLoS One ; 17(9): e0273843, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36054185

RESUMEN

INTRODUCTION: Liver sinusoidal endothelial cells (LSECs) are specialized fenestrated scavenger endothelial cells involved in the elimination of modified plasma proteins and tissue turnover waste macromolecules from blood. LSECs also participate in liver immune responses. A challenge when studying LSEC biology is the rapid loss of the in vivo phenotype in culture. In this study, we have examined biological processes and pathways affected during early-stage primary culture of rat LSECs and checked for cell responses to the pro-inflammatory cytokine interleukin (IL)-1ß and the anti-inflammatory drug dexamethasone. METHODS: LSECs from male Sprague Dawley rats were cultured on type I collagen in 5% oxygen atmosphere in DMEM with serum-free supplements for 2 and 24 h. Quantitative proteomics using tandem mass tag technology was used to examine proteins in cells and supernatants. Validation was done with qPCR, ELISA, multiplex immunoassay, and caspase 3/7 assay. Cell ultrastructure was examined by scanning electron microscopy, and scavenger function by quantitative endocytosis assays. RESULTS: LSECs cultured for 24 h showed a characteristic pro-inflammatory phenotype both in the presence and absence of IL-1ß, with upregulation of cellular responses to cytokines and interferon-γ, cell-cell adhesion, and glycolysis, increased expression of fatty acid binding proteins (FABP4, FABP5), and downregulation of several membrane receptors (STAB1, STAB2, LYVE1, CLEC4G) and proteins in pyruvate metabolism, citric acid cycle, fatty acid elongation, amino acid metabolism, and oxidation-reduction processes. Dexamethasone inhibited apoptosis and improved LSEC viability in culture, repressed inflammatory and immune regulatory pathways and secretion of IL-1ß and IL-6, and further upregulated FABP4 and FABP5 compared to time-matched controls. The LSEC porosity and endocytic activity were reduced at 24 h both with and without dexamethasone but the dexamethasone-treated cells showed a less stressed phenotype. CONCLUSION: Rat LSECs become activated towards a pro-inflammatory phenotype during early culture. Dexamethasone represses LSEC activation, inhibits apoptosis, and improves cell viability.


Asunto(s)
Células Endoteliales , Proteoma , Animales , Dexametasona/metabolismo , Dexametasona/farmacología , Células Endoteliales/metabolismo , Hígado/metabolismo , Masculino , Proteoma/metabolismo , Ratas , Ratas Sprague-Dawley , Secretoma
12.
J Radiat Res ; 62(3): 401-413, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33899109

RESUMEN

Reciprocal communication between the malignant and non-malignant cellular elements in tumors is essential for cancer sustainability and plays an important role in the response of cancers to treatments. Some of this cellular crosstalk takes place via secretion of vesicles that are actively released into the extracellular space by most cell types in tumors. Recent studies have demonstrated radiation-induced changes in the secretion rate and composition of extracellular vesicles (EVs), with impact on radiation-related cellular communication. However, little is known about the effects of different radiation regimens on the release of EVs by cells of the tumor microenvironment. In this study, we provide a comprehensive molecular characterization of EVs released by cultured primary lung tumor fibroblasts. We explore the quantitative and morphological changes triggered by ionizing radiation (IR), delivered as a single dose of 18 Gy or three consecutive daily medium-doses of 6 Gy. Cancer-associated fibroblasts (CAFs) secrete EVs with sizes ranging from 80 to 200 nm, expressing some of the classical exosome markers. Exposing CAFs to a single-high radiation dose (1 × 18 Gy) or fractionated medium-dose did not alter the release of CAF-EVs. The protein composition of CAF-EVs was analyzed by LC-MS/MS proteomics and revealed that CAF-EVs are enriched with heat shock proteins, integrins, tetraspanins, proteinases, collagens, growth factors and an array of molecules involved in the regulation of cell migration and the immune system. Quantitative proteomic analyses revealed minor changes in the protein composition of CAF-EVs after radiation exposure. Taken together, this study presents original data on lung tumor CAF-EV composition and reveals that release and protein cargo of CAF-EVs are largely unaltered after exposing CAFs to IR.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/efectos de la radiación , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efectos de la radiación , Proteínas/metabolismo , Radiación Ionizante , Apoptosis/efectos de la radiación , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Senescencia Celular/efectos de la radiación , Vesículas Extracelulares/ultraestructura , Femenino , Humanos , Masculino
13.
Front Immunol ; 12: 662594, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177901

RESUMEN

Cancer-associated fibroblasts (CAFs) participate actively in tumor development and affect treatment responses, by among other mechanisms, promoting an immunosuppressive tumor microenvironment. In contrast to normal fibroblasts, reactive CAFs secrete a myriad of immunomodulatory soluble factors at high levels, i.e. growth factors, cytokines, and chemokines, which directly influence tumor immunity and inflammation. CAFs have been identified as important players in tumor radioresistance. However, knowledge on the immunomodulatory functions of CAFs during/after radiotherapy is still lacking. In this study, we investigated the effects of ionizing radiation on CAF-mediated regulation of dendritic cells (DCs). CAFs were obtained from freshly operated lung cancer tissues, while DCs were procured from peripheral blood of healthy donors. Experimental settings comprised both co-cultures and incubations with conditioned medium from control and irradiated CAFs. Functional assays to study DC differentiation/activation consisted on cytokine release, expression of cell-surface markers, antigen uptake, migration rates, T cell priming, and DC-signaling analysis. We demonstrate that CAFs induce a tolerogenic phenotype in DCs by promoting down-regulation of: i) signature DC markers (CD14, CD1a, CD209); ii) activation markers (CD80, CD86, CD40, and HLA-DR) and iii) functional properties (migration, antigen uptake, and CD4+ T cell priming). Notably, some of these effects were lost in conditioned medium from CAFs irradiated at fractionated medium-dose regimens (3x6 Gy). However, the expression of relevant CAF-derived regulatory agents like thymic stromal lymphopoietin (TSLP) or tryptophan 2,3-dioxygenase (TDO2) was unchanged upon irradiation. This study demonstrates that CAFs interfere with DC immune functions and unveil that certain radiation regimens may reverse CAF-mediated immunosuppressive effects.


Asunto(s)
Fibroblastos Asociados al Cáncer/inmunología , Fibroblastos Asociados al Cáncer/efectos de la radiación , Células Dendríticas/inmunología , Tolerancia Inmunológica/efectos de la radiación , Radiación Ionizante , Diferenciación Celular/inmunología , Técnicas de Cocultivo , Células Dendríticas/fisiología , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Masculino , Transducción de Señal/inmunología
14.
Front Immunol ; 11: 602530, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584669

RESUMEN

Recent studies have demonstrated that radiotherapy is able to induce anti-tumor immune responses in addition to mediating direct cytotoxic effects. Cancer-associated fibroblasts (CAFs) are central constituents of the tumor stroma and participate actively in tumor immunoregulation. However, the capacity of CAFs to influence immune responses in the context of radiotherapy is still poorly understood. This study was undertaken to determine whether ionizing radiation alters the CAF-mediated immunoregulatory effects on natural killer (NK) cells. CAFs were isolated from freshly resected non-small cell lung cancer tissues, while NK cells were prepared from peripheral blood of healthy donors. Functional assays to study NK cell immune activation included proliferation rates, expression of cell surface markers, secretion of immunomodulators, cytotoxic assays, as well as production of intracellular activation markers such as perforin and granzyme B. Our data show that CAFs inhibit NK cell activation by reducing their proliferation rates, the cytotoxic capacity, the extent of degranulation, and the surface expression of stimulatory receptors, while concomitantly enhancing surface expression of inhibitory receptors. Radiation delivered as single high-dose or in fractioned regimens did not reverse the immunosuppressive features exerted by CAFs over NK cells in vitro, despite triggering enhanced surface expression of several checkpoint ligands on irradiated CAFs. In summary, CAFs mediate noticeable immune inhibitory effects on cytokine-activated NK cells during co-culture in a donor-independent manner. However, ionizing radiation does not interfere with the CAF-mediated immunosuppressive effects.


Asunto(s)
Fibroblastos Asociados al Cáncer/inmunología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Rayos gamma , Células Asesinas Naturales/inmunología , Neoplasias Pulmonares/inmunología , Microambiente Tumoral/efectos de la radiación , Células A549 , Fibroblastos Asociados al Cáncer/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Células Asesinas Naturales/patología , Neoplasias Pulmonares/patología
15.
BMC Mol Cell Biol ; 21(1): 85, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33246411

RESUMEN

BACKGROUND: Liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs; liver resident macrophages) form the body's most effective scavenger cell system for the removal of harmful blood-borne substances, ranging from modified self-proteins to pathogens and xenobiotics. Controversies in the literature regarding the LSEC phenotype pose a challenge when determining distinct functionalities of KCs and LSECs. This may be due to overlapping functions of the two cells, insufficient purification and/or identification of the cells, rapid dedifferentiation of LSECs in vitro, or species differences. We therefore characterized and quantitatively compared expressed gene products of freshly isolated, highly pure LSECs (fenestrated SE-1/FcγRIIb2+) and KCs (CD11b/c+) from Sprague Dawley, Crl:CD (SD), male rats using high throughput mRNA-sequencing and label-free proteomics. RESULTS: We observed a robust correlation between the proteomes and transcriptomes of the two cell types. Integrative analysis of the global molecular profile demonstrated the immunological aspects of LSECs. The constitutive expression of several immune genes and corresponding proteins of LSECs bore some resemblance with the expression in macrophages. LSECs and KCs both expressed high levels of scavenger receptors (SR) and C-type lectins. Equivalent expression of SR-A1 (Msr1), mannose receptor (Mrc1), SR-B1 (Scarb1), and SR-B3 (Scarb2) suggested functional similarity between the two cell types, while functional distinction between the cells was evidenced by LSEC-specific expression of the SRs stabilin-1 (Stab1) and stabilin-2 (Stab2), and the C-type lectins LSECtin (Clec4g) and DC-SIGNR (Clec4m). Many immune regulatory factors were differentially expressed in LSECs and KCs, with one cell predominantly expressing a specific cytokine/chemokine and the other cell the cognate receptor, illustrating the complex cytokine milieu of the sinusoids. Both cells expressed genes and proteins involved in antigen processing and presentation, and lymphocyte co-stimulation. CONCLUSIONS: Our findings support complementary and partly overlapping scavenging and immune functions of LSECs and KCs. This highlights the importance of including LSECs in studies of liver immunity, and liver clearance and toxicity of large molecule drugs and nano-formulations.


Asunto(s)
Células Endoteliales/metabolismo , Perfilación de la Expresión Génica , Hígado/citología , Macrófagos/metabolismo , Proteoma/metabolismo , Animales , Presentación de Antígeno/inmunología , Antígenos CD11/metabolismo , Regulación de la Expresión Génica , Ontología de Genes , Macrófagos del Hígado/metabolismo , Lectinas/genética , Lectinas/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Activación de Linfocitos/inmunología , Masculino , Ratas Sprague-Dawley , Receptores Depuradores/genética , Receptores Depuradores/metabolismo
16.
Cell Death Dis ; 11(11): 985, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203838

RESUMEN

Sarcomas are mesenchymal cancers with poor prognosis, representing about 20% of all solid malignancies in children, adolescents, and young adults. Radio- and chemoresistance are common features of sarcomas warranting the search for novel prognostic and predictive markers. GARP/LRRC32 is a TGF-ß-activating protein that promotes immune escape and dissemination in various cancers. However, if GARP affects the tumorigenicity and treatment resistance of sarcomas is not known. We show that GARP is expressed by human osteo-, chondro-, and undifferentiated pleomorphic sarcomas and is associated with a significantly worse clinical prognosis. Silencing of GARP in bone sarcoma cell lines blocked their proliferation and induced apoptosis. In contrast, overexpression of GARP promoted their growth in vitro and in vivo and increased their resistance to DNA damage and cell death induced by etoposide, doxorubicin, and irradiation. Our data suggest that GARP could serve as a marker with therapeutic, prognostic, and predictive value in sarcoma. We propose that targeting GARP in bone sarcomas could reduce tumour burden while simultaneously improving the efficacy of chemo- and radiotherapy.


Asunto(s)
Neoplasias Óseas/metabolismo , Proteínas de la Membrana/metabolismo , Osteosarcoma/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Niño , Preescolar , Femenino , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Osteosarcoma/patología , Pronóstico , Adulto Joven
17.
Cancers (Basel) ; 11(5)2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31108906

RESUMEN

The abilities of cancer-associated fibroblasts (CAFs) to regulate immune responses in the context of radiotherapy remain largely unknown. This study was undertaken to determine whether ionizing radiation alters the CAF-mediated immunoregulatory effects on macrophages. CAFs were isolated from freshly-resected non-small cell lung cancer tumors, while monocyte-derived macrophages were prepared from peripheral blood of healthy donors. Experimental settings included both (CAF-macrophage) co-cultures and incubations of M0 and M1-macrophages in the presence of CAF-conditioned medium (CAF-CM). Functional assays to study macrophage polarization/activation included the expression of cell surface markers, production of nitric oxide, secretion of inflammatory cytokines and migratory capacity. We show that CAFs promote changes in M0-macrophages that harmonize with both M1-and M2-phenotypes. Additionally, CAFs inhibit pro-inflammatory features of M1-macrophages by reducing nitric oxide production, pro-inflammatory cytokines, migration, and M1-surface markers expression. Radiation delivered as single-high dose or in fractioned regimens did not modify the immunoregulatory features exerted by CAFs over macrophages in vitro. Protein expression analyses of CAF supernatants showed that irradiated and non-irradiated CAFs produce approximately the same protein levels of immunoregulators. Thus, CAF-derived soluble factors mediate measurable changes on uncommitted macrophages and down-regulate pro-inflammatory features of M1-polarized macrophages. Notably, ionizing radiation does not curtail the CAF-mediated immunosuppressive effects.

18.
Sci Rep ; 9(1): 10163, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308421

RESUMEN

Preclinical evidence suggests that stromal expression of platelet-derived growth factor receptors (PDGFRs) stimulates tumor development and diminishes intratumoral drug uptake. In non-small cell lung cancer (NSCLC), the clinical relevance of stromal PDGFR expression remains uncertain. Tumor specimens from 553 patients with primary operable stage I-IIIB NSCLC was obtained and tissue micro-arrays (TMA) were constructed (Norwegian cohort). Immunohistochemistry (IHC) was used to evaluate the expression of PDGFRα and -ß in stromal cells and to explore their impact on patient survival. Results were validated in a non-related cohort consisting of TMAs of 367 stage I (A and B) NSCLC patients (Swedish cohort). High stromal PDGFRα expression was an independent predictor of increased survival in the overall populations and SCC (squamous cell carcinoma) subgroups of both investigated cohorts. PDGFRß was an independent predictor of poor survival in the overall Norwegian cohort and an independent predictor of increased survival in the ADC (adenocarcinoma) subgroup of the Swedish cohort. Tumors displaying the combination PDGFRα-low/PDGFRß-high exhibited inferior survival according to increasing stage in the Norwegian cohort. This study confirms that high stromal expression of PDGFRα is a predictor of increased survival in NSCLC. Further exploration of the prognostic impact of PDGFRß and the relationship between PDGFRα and -ß is warranted.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores del Factor de Crecimiento Derivado de Plaquetas/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Femenino , Humanos , Inmunohistoquímica/métodos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Pronóstico , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células del Estroma/metabolismo , Análisis de Matrices Tisulares/métodos
19.
Front Immunol ; 9: 1679, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30105016

RESUMEN

The implementation of novel cancer immunotherapies in the form of immune checkpoint blockers represents a major advancement in the treatment of cancer, and has renewed enthusiasm for identifying new ways to induce antitumor immune responses in patients. Despite the proven efficacy of neutralizing antibodies that target immune checkpoints in some refractory cancers, many patients do not experience therapeutic benefit, possibly owing to a lack of antitumor immune recognition, or to the presence of dominant immunosuppressive mechanisms in the tumor microenvironment (TME). Recent developments in this field have revealed that local radiotherapy (RT) can transform tumors into in situ vaccines, and may help to overcome some of the barriers to tumor-specific immune rejection. RT has the potential to ignite tumor immune recognition by generating immunogenic signals and releasing neoantigens, but the multiple immunosuppressive forces in the TME continue to represent important barriers to successful tumor rejection. In this article, we review the radiation-induced changes in the stromal compartments of tumors that could have an impact on tumor immune attack. Since different RT regimens are known to mediate strikingly different effects on the multifarious elements of the tumor stroma, special emphasis is given to different RT schedules, and the time after treatment at which the effects are measured. A better understanding of TME remodeling following specific RT regimens and the window of opportunity offered by RT will enable optimization of the design of novel treatment combinations.


Asunto(s)
Inmunomodulación/efectos de la radiación , Neoplasias/inmunología , Neoplasias/patología , Células del Estroma/inmunología , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de la radiación , Animales , Biomarcadores , Matriz Extracelular , Humanos , Inmunidad/efectos de la radiación , Vasos Linfáticos/efectos de la radiación , Neoplasias/metabolismo , Neoplasias/terapia , Neovascularización Patológica/inmunología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/radioterapia , Radioterapia , Células del Estroma/metabolismo , Células del Estroma/patología
20.
PLoS One ; 13(2): e0192157, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29415055

RESUMEN

OBJECTIVES: Selective targeting of cancer-associated fibroblasts (CAFs) has been proposed to synergize with immune-checkpoint inhibitors. While the roles of CAFs in cancer development are well described, their immune-regulatory properties remain incompletely understood. This study investigates correlations between CAF and immune-markers in tumor stroma from non-small cell lung cancer (NSCLC) patients, and examines whether a combination of CAF and immune cell scores impact patient prognosis. METHODS: Tumor specimens from 536 primary operable stage I-III NSCLC patients were organized in tissue microarrays. Expression of protein-markers was evaluated by immunohistochemistry. RESULTS: Fibroblast and stromal markers PDGFRα, PDGFRß, FAP-1 and vimentin showed weak correlations while αSMA, and Masson's trichrome did not correlate with any of the investigated markers. Hierarchical clustering indicated the existence of different CAF-subsets. No relevant correlations were found between any CAF-marker and the immune-markers CD3, CD4, CD8, CD20, CD68, CD1a, CD56, FoxP3 and CD45RO. High density of fibroblast-activation protein positive mesenchymal cells (CAFFAP) was associated with better prognosis in tumors with high infiltration of CD8 and CD3 T-lymphocytes. CONCLUSIONS: The presented data suggest that CAFs, irrespective of identity, have low influence on the degree of tumor infiltration by inflammatory- and/or immune-cells. However, CAFFAP may exert immuno-adjuvant roles in NSCLC, and targeting CAFs should be cautiously considered.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 13/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Estudios de Cohortes , Humanos , Inmunofenotipificación , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Análisis de Supervivencia , Análisis de Matrices Tisulares
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda