Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Reproduction ; 159(4): 437-451, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31990675

RESUMEN

Human spermatogonial stem cells (SSCs) are an essential source to maintain spermatogenesis as an efficient process for daily sperm production with high self-renewal capacity along adulthood. However, the phenotype and the subpopulation that represent the real reserve SSC for the human testis remain unknown. Moreover, although SSC markers have been described for undifferentiated spermatogonia (Adark and Apale), the existence of a specific subtype that could be identified as the actual/true SSC has not yet been fully determined. Herein we evaluated spermatogonial morphology, kinetics, positioning regarding blood vasculature in relation to protein expression (UTF1, GFRA1, and KIT) as well as proliferative activity (MCM7) and identified a small subpopulation of Adark with nuclear rarefaction zone (AdVac) that behaves as the human reserve SSC. We show that AdVac is the smallest human spermatogonial population (10%), staying quiescent (89%) and positioned close to blood vessels throughout most of the stages of the seminiferous epithelium cycle (SEC) and divides only at stages I and II. Within this AdVac population, we found a smaller pool (2% of A undifferentiated spermatogonia) of entirely quiescent cells exhibiting a high expression of UTF1 and lacking GFRA1. This finding suggests them as the real human reserve SSC (AdVac UTF1+/GFRA1-/MCM7-). Additionally, Adark without nuclear vacuole (AdNoVac) and Apale have similar kinetic and high proliferative capacity throughout the SEC (47%), indicating that they are actively dividing undifferentiated spermatogonia. Identification of human stem cells with evident reserve SSC functionality may help further studies intending to sort SSCs to treat male diseases and infertility.


Asunto(s)
Células Madre Germinales Adultas , Espermatogonias/fisiología , Testículo/citología , Adulto , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Mitosis , Proteínas Nucleares/metabolismo , Espermatogonias/citología , Testículo/irrigación sanguínea , Transactivadores/metabolismo
2.
Reprod Toxicol ; 98: 82-91, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32916274

RESUMEN

Bacterial infection alters placental ABC transporters expression. These transporters provide fetal protection against circulating xenobiotics and environmental toxins present in maternal blood. We hypothesized that lipopolysaccharide (LPS-bacterial mimic) alters the yolk sac morphology and expression of key ABC transporters in a gestational-age dependent manner. Yolk sac samples from C57BL/6 mice were obtained at gestational ages (GD) 15.5 and GD18.5, 4 or 24 h after LPS exposure (150ug/kg; n = 8/group). Samples underwent morphometrical, qPCR and immunohistochemistry analysis. The volumetric proportions of the histological components of the yolk sac did not change in response to LPS. LPS increased Abcg2 expression at GD15.5, after 4 h of treatment (p < 0.05). No changes in Abca1, Abcb1a/b, Abcg1, Glut1, Snat1, Il-1ß, Ccl2 and Mif were observed. Il-6 and Cxcl1 were undetectable in the yolk sac throughout pregnancy. Abca1, breast cancer resistance protein (Bcrp, encoded by Abcg2) and P-glycoprotein (P-gp/ Abcb1a/b) were localized in the endodermal (uterine-facing) epithelium and to a lesser extent in the mesothelium (amnion-facing), whereas Abca1 was also localized to the endothelium of the yolk sac blood vessels. LPS increased the labeling area and intensity of Bcrp in the yolk sac's mesothelial cells at GD15.5 (4 h), whereas at GD18.5, the area of Bcrp labeling in the mesothelium (4 and 24 h) was decreased (p < 0.05). Bacterial infection has the potential to change yolk sac barrier function by affecting Bcrp and Abcg2 expression in a gestational-age dependent-manner. These changes may alter fetal exposure to xenobiotics and toxic substances present in the maternal circulation and in the uterine cavity.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Lipopolisacáridos/farmacología , Saco Vitelino/efectos de los fármacos , Animales , Femenino , Edad Gestacional , Ratones Endogámicos C57BL , Embarazo , Saco Vitelino/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda