Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Diabetes ; 72(11): 1560-1573, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37347719

RESUMEN

Besides the secretion of fatty acids, lipolytic stimulation of adipocytes results in the secretion of triglyceride-rich extracellular vesicles and some free proteins (e.g., fatty acid binding protein 4) that, in sum, affect adipose homeostasis as well as the development of metabolic disease. At the mechanistic level, lipolytic signals activate p53 in an adipose triglyceride lipase-dependent manner, and pharmacologic inhibition of p53 attenuates adipocyte-derived extracellular vesicle (AdEV) protein and FABP4 secretion. Mass spectrometry analyses of the lipolytic secretome identified proteins involved in glucose and fatty acid metabolism, translation, chaperone activities, and redox control. Consistent with a role for p53 in adipocyte protein secretion, activation of p53 by the MDM2 antagonist nutlin potentiated AdEV particles and non-AdEV protein secretion from cultured 3T3-L1 or OP9 adipocytes while the levels of FABP4 and AdEV proteins were significantly reduced in serum from p53-/- mice compared with wild-type controls. The genotoxin doxorubicin increased AdEV protein and FABP4 secretion in a p53-dependent manner and DNA repair-depleted ERCC1-/Δ-haploinsufficient mice expressed elevated p53 in adipose depots, along with significantly increased serum FABP4. In sum, these data suggest that lipolytic signals, and cellular stressors such as DNA damage, facilitate AdEV protein and FABP4 secretion by adipocytes in a p53-dependent manner.


Asunto(s)
Exosomas , Proteína p53 Supresora de Tumor , Animales , Ratones , Células 3T3-L1 , Adipocitos/metabolismo , Exosomas/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Lipólisis , Obesidad/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
Mol Neurodegener ; 15(1): 27, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32299471

RESUMEN

BACKGROUND: Studies link c-Abl activation with the accumulation of pathogenic α-synuclein (αS) and neurodegeneration in Parkinson's disease (PD). Currently, c-Abl, a tyrosine kinase activated by cellular stress, is thought to promote αS pathology by either directly phosphorylating αS or by causing autophagy deficits. METHODS: αS overexpressing transgenic (Tg) mice were used in this study. A53T Tg mice that express high levels of human mutant A53TαS under the control of prion protein promoter. Two different approaches were used in this study. Natural aging and seeding model of synucleinopathy. In seeding model, intracortical/intrastriatal (IC/IS) stereotaxic injection of toxic lysates was done using tissue lysates from end-stage symptomatic mice. In this study, nilotinib and pifithrin-α was used as a c-Abl and p53 inhibitor, respectively. Both Tg and non-transgenic (nTg) mice from each group were subjected to nilotinib (10 mg/kg) or vehicle (DMSO) treatment. Frozen brain tissues from PD and control human cases were analyzed. In vitro cells study was implied for c-Abl/p53 genetic manipulation to uncover signal transduction. RESULTS: Herein, we show that the pathologic effects of c-Abl in PD also involve activation of p53, as c-Abl activation in a transgenic mouse model of α-synucleinopathy (TgA53T) and human PD cases are associated with the increased p53 activation. Significantly, active p53 in TgA53T neurons accumulates in the cytosol, which may lead to inhibition of autophagy. Thus, we hypothesized that c-Abl-dependent p53 activation contributes to autophagy impairment in α-synucleinopathy. In support of the hypothesis, we show that c-Abl activation is sufficient to inhibit autophagy in p53-dependent manner. Moreover, inhibition of either c-Abl, using nilotinib, or p53, using pifithrin-α, was sufficient to increase autophagic flux in neuronal cells by inducing phosphorylation of AMP-activated kinase (AMPK), ULK1 activation, and down-regulation of mTORC1 signaling. Finally, we show that pharmacological attenuation of c-Abl activity by nilotinib treatment in the TgA53T mouse model reduces activation of p53, stimulates autophagy, decreases accumulation αS pathology, and delays disease onset. CONCLUSION: Collectively, our data show that c-Abl activation by α-synucleinopathy causes p53 dependent autophagy deficits and both c-Abl and p53 represent therapeutic target for PD.


Asunto(s)
Autofagia/fisiología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Ratones , Ratones Transgénicos , Sinucleinopatías/metabolismo , Sinucleinopatías/patología , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda