Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Org Chem ; 89(12): 8937-8950, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38848463

RESUMEN

Heliannuols are a unique class of sesquiterpenes isolated mostly from Helianthus annuus, commonly known as sunflower. The interesting allelopathic properties, combined with their unprecedented carbon skeletons, have drawn wide attention to phytochemistry and synthetic groups. So far, 14 heliannuols (heliannuols A-N) have been described in the literature, although some of them have not yet been validated by total synthesis. Moreover, the structural proposal of some compounds was based on the similarity of NMR data reported for previously isolated analogues (which in many instances turned out to be incorrect), coupled with little or no stereochemical analysis. Consequently, the structural reassignment is a recurring theme in heliannuol's family. Through a rigorous and comprehensive quantum chemical simulation of NMR parameters, encompassing an integrated ANN-PRA/DP4+ tandem approach, we intended to advance unexplored directions regarding the structure of the entire heliannuol family. Furthermore, we found that the size of the fused ring significantly influences the signals corresponding to the aromatic ring, making this discovery an excellent diagnostic tool for quickly determining the core structure of these compounds.

2.
Molecules ; 29(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38930790

RESUMEN

Seven new abietane diterpenoids, comprising medusanthol A-G (1-3, 5, 7-9) and two previously identified analogs (4 and 6), were isolated from the hexane extract of the aerial parts of Medusantha martiusii. The structures of the compounds were elucidated by HRESIMS, 1D/2D NMR spectroscopic data, IR spectroscopy, NMR calculations with DP4+ probability analysis, and ECD calculations. The anti-neuroinflammatory potential of compounds 1-7 was evaluated by determining their ability to inhibit the production of nitric oxide (NO) and the proinflammatory cytokine TNF-α in BV2 microglia stimulated with LPS and IFN-γ. Compounds 1-4 and 7 exhibited decreased NO levels at a concentration of 12.5 µM. Compound 1 demonstrated strong activity with an IC50 of 3.12 µM, and compound 2 had an IC50 of 15.53 µM; both compounds effectively reduced NO levels compared to the positive control quercetin (IC50 11.8 µM). Additionally, both compounds significantly decreased TNF-α levels, indicating their potential as promising anti-neuroinflammatory agents.


Asunto(s)
Abietanos , Antiinflamatorios , Microglía , Óxido Nítrico , Abietanos/farmacología , Abietanos/química , Abietanos/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/química , Animales , Óxido Nítrico/metabolismo , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Línea Celular , Estructura Molecular , Lipopolisacáridos , Componentes Aéreos de las Plantas/química
3.
J Nat Prod ; 85(9): 2184-2191, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-35998343

RESUMEN

Herein, the isolation of secondary metabolites from the aerial parts of Justicia aequilabris guided by HPLC-MSn and molecular networking analyses is reported. Twenty-two known compounds were dereplicated. Three new lignans (aequilabrines A-C (1-3)) and three known compounds (lariciresinol-4'-O-ß-glucose (4), roseoside (5), and allantoin (6)) were obtained. The anti-inflammatory activity of compounds 1-3 was evaluated in vitro by inhibiting the nitric oxide production (NO) and pro-inflammatory activity on the cytokine IL-1ß. Compounds 2 and 3 showed significant inhibitory activity against NO production, with IC50 values of 9.1 and 7.3 µM, respectively. The maximum inhibition of IL-1ß production was 23.5% (1), 27.3% (2), and 32.5% (3).


Asunto(s)
Antiinflamatorios , Género Justicia , Lignanos , Alantoína/química , Alantoína/aislamiento & purificación , Alantoína/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Furanos/química , Furanos/aislamiento & purificación , Furanos/farmacología , Lignanos/química , Lignanos/aislamiento & purificación , Lignanos/farmacología , Estructura Molecular , Óxido Nítrico/antagonistas & inhibidores , Extractos Vegetales/química
4.
Magn Reson Chem ; 60(4): 434-441, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34741339

RESUMEN

Recently, structural elucidation of natural products has undergone a revolution. The combined use of different modern spectroscopic methods has allowed obtaining a complete structural assignment of natural products using small amounts of sample. However, despite the extraordinary ongoing advances in spectroscopy, the mischaracterization of natural products has been and remains a recurrent problem, especially when the substance presents several stereogenic centers. The misinterpretation of nuclear magnetic resonance (NMR) data has resulted in frequent reports addressing structural reassignment. In this context, a great effort has been devoted to developing quantum chemical calculations that simulate NMR parameters accurately, allowing to achieve a more precise spectral interpretation. In this work, we employed a protocol for theoretical calculations of 1 H NMR chemical shifts and coupling constants using density functional theory (DFT), followed by the application of the DP4+ method to revisit the structure of Heliannuol L, a member of the Heliannuol class, isolated from Helianthus annuus. Our results indicate that the originally proposed structure of Heliannuol L needs a stereochemical reassignment, placing the hydroxyl bonded to C10 in the opposite side of the methyl and hydroxyl groups bonded to C7 and C8, respectively.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda