Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
EMBO J ; 39(9): e102731, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32149416

RESUMEN

Mitochondria house anabolic and catabolic processes that must be balanced and adjusted to meet cellular demands. The RNA-binding protein CLUH (clustered mitochondria homolog) binds mRNAs of nuclear-encoded mitochondrial proteins and is highly expressed in the liver, where it regulates metabolic plasticity. Here, we show that in primary hepatocytes, CLUH coalesces in specific ribonucleoprotein particles that define the translational fate of target mRNAs, such as Pcx, Hadha, and Hmgcs2, to match nutrient availability. Moreover, CLUH granules play signaling roles, by recruiting mTOR kinase and the RNA-binding proteins G3BP1 and G3BP2. Upon starvation, CLUH regulates translation of Hmgcs2, involved in ketogenesis, inhibits mTORC1 activation and mitochondrial anabolic pathways, and promotes mitochondrial turnover, thus allowing efficient reprograming of metabolic function. In the absence of CLUH, a mitophagy block causes mitochondrial clustering that is rescued by rapamycin treatment or depletion of G3BP1 and G3BP2. Our data demonstrate that metabolic adaptation of liver mitochondria to nutrient availability depends on a compartmentalized CLUH-dependent post-transcriptional mechanism that controls both mTORC1 and G3BP signaling and ensures survival.


Asunto(s)
Mitocondrias Hepáticas/fisiología , Proteínas Mitocondriales/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Animales , Células COS , Chlorocebus aethiops , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Mitofagia , Proteínas de Unión al ARN/genética
2.
Elife ; 112022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35559794

RESUMEN

Proliferating cells undergo metabolic changes in synchrony with cell cycle progression and cell division. Mitochondria provide fuel, metabolites, and ATP during different phases of the cell cycle, however it is not completely understood how mitochondrial function and the cell cycle are coordinated. CLUH (clustered mitochondria homolog) is a post-transcriptional regulator of mRNAs encoding mitochondrial proteins involved in oxidative phosphorylation and several metabolic pathways. Here, we show a role of CLUH in regulating the expression of astrin, which is involved in metaphase to anaphase progression, centrosome integrity, and mTORC1 inhibition. We find that CLUH binds both the SPAG5 mRNA and its product astrin, and controls the synthesis and the stability of the full-length astrin-1 isoform. We show that CLUH interacts with astrin-1 specifically during interphase. Astrin-depleted cells show mTORC1 hyperactivation and enhanced anabolism. On the other hand, cells lacking CLUH show decreased astrin levels and increased mTORC1 signaling, but cannot sustain anaplerotic and anabolic pathways. In absence of CLUH, cells fail to grow during G1, and progress faster through the cell cycle, indicating dysregulated matching of growth, metabolism, and cell cycling. Our data reveal a role of CLUH in coupling growth signaling pathways and mitochondrial metabolism with cell cycle progression.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Azul Alcián , Ciclo Celular , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metafase , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Fenazinas , Fenotiazinas , ARN Mensajero/metabolismo , Resorcinoles
3.
J Cell Biol ; 216(3): 675-693, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28188211

RESUMEN

Mitochondria are essential organelles that host crucial metabolic pathways and produce adenosine triphosphate. The mitochondrial proteome is heterogeneous among tissues and can dynamically change in response to different metabolic conditions. Although the transcriptional programs that govern mitochondrial biogenesis and respiratory function are well known, posttranscriptional regulatory mechanisms remain unclear. In this study, we show that the cytosolic RNA-binding protein clustered mitochondria homologue (CLUH) regulates the expression of a mitochondrial protein network supporting key metabolic programs required under nutrient deprivation. CLUH exerts its function by controlling the stability and translation of target messenger RNAs. In the absence of Cluh, mitochondria are severely depleted of crucial enzymes involved in catabolic energy-converting pathways. CLUH preserves oxidative mitochondrial function and glucose homeostasis, thus preventing death at the fetal-neonatal transition. In the adult liver, CLUH ensures maximal respiration capacity and the metabolic response to starvation. Our results shed new light on the posttranscriptional mechanisms controlling the expression of mitochondrial proteins and suggest novel strategies to tailor mitochondrial function to physiological and pathological conditions.


Asunto(s)
Mitocondrias/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Citosol/metabolismo , Citosol/fisiología , Metabolismo Energético/fisiología , Regulación de la Expresión Génica/fisiología , Homeostasis/fisiología , Metabolismo/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Interferencia de ARN/fisiología
4.
Nat Commun ; 7: 13691, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27917860

RESUMEN

The turnover of messenger RNAs (mRNAs) is a key regulatory step of gene expression in eukaryotic cells. Due to the complexity of the mammalian degradation machinery, the contribution of decay factors to the directionality of mRNA decay is poorly understood. Here we characterize a molecular tool to interrogate mRNA turnover via the detection of XRN1-resistant decay fragments (xrFrag). Using nonsense-mediated mRNA decay (NMD) as a model pathway, we establish xrFrag analysis as a robust indicator of accelerated 5'-3' mRNA decay. In tethering assays, monitoring xrFrag accumulation allows to distinguish decapping and endocleavage activities from deadenylation. Moreover, xrFrag analysis of mRNA degradation induced by miRNAs, AU-rich elements (AREs) as well as the 3' UTRs of cytokine mRNAs reveals the contribution of 5'-3' decay and endonucleolytic cleavage. Our work uncovers formerly unrecognized modes of mRNA turnover and establishes xrFrag as a powerful tool for RNA decay analyses.


Asunto(s)
Exorribonucleasas/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Asociadas a Microtúbulos/genética , Degradación de ARNm Mediada por Codón sin Sentido , ARN Mensajero/genética , Regiones no Traducidas 3'/genética , Elementos Ricos en Adenilato y Uridilato/genética , Secuencia de Bases , Exorribonucleasas/metabolismo , Células HeLa , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , MicroARNs/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Genéticos , Interferencia de ARN , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda