Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Addict Biol ; 21(2): 387-96, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25545401

RESUMEN

Repeated ethanol injections lead to a sensitization of its stimulant effects in mice. Some recent results argue against a role for ventral tegmental area (VTA) dopamine neurons in ethanol behavioral sensitization. The aim of the present study was to test whether in vivo ethanol locomotor sensitization correlates with changes in either basal- or ethanol-evoked firing rates of dopamine neurons in vitro. Female Swiss mice were daily injected with 2.5 g/kg ethanol (or saline in the control group) for 7 days and their locomotor activity was recorded. At the end of the sensitization procedure, extracellular recordings were made from dopaminergic neurons in midbrain slices from these mice. Significantly higher spontaneous basal firing rates of dopamine neurons were recorded in ethanol-sensitized mice relative to control mice, but without correlations with the behavioral effects. The superfusion of sulpiride, a dopamine D2 antagonist, induced a stronger increase of dopamine neuron firing rates in ethanol-sensitized mice. This shows that the D2 feedback in dopamine neurons is preserved after chronic ethanol administration and argues against a reduced D2 feedback as an explanation for the increased dopamine neuron basal firing rates in ethanol-sensitized mice. Finally, ethanol superfusion (10-100 mM) significantly increased the firing rates of dopamine neurons and this effect was of higher magnitude in ethanol-sensitized mice. Furthermore, there were significant correlations between such a sensitization of dopamine neuron activity and ethanol behavioral sensitization. These results support the hypothesis that changes in brain dopamine neuron activity contribute to the behavioral sensitization of the stimulant effects of ethanol.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Etanol/farmacología , Potenciales de Acción/efectos de los fármacos , Análisis de Varianza , Animales , Autorreceptores/efectos de los fármacos , Antagonistas de Dopamina/farmacología , Antagonistas de los Receptores de Dopamina D2/farmacología , Femenino , Ratones , Actividad Motora/efectos de los fármacos , Receptores de Dopamina D2/efectos de los fármacos , Sulpirida/farmacología , Área Tegmental Ventral/efectos de los fármacos
2.
Sci Rep ; 7(1): 17747, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29255277

RESUMEN

Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (sτ [N s m-3]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. sτ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda