Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Diabet Med ; 29(8): 1067-73, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22150642

RESUMEN

BACKGROUND: Because declining glucose levels should be detected quickly in persons with Type 1 diabetes, a lag between blood glucose and subcutaneous sensor glucose can be problematic. It is unclear whether the magnitude of sensor lag is lower during falling glucose than during rising glucose. METHODS: Initially, we analysed 95 data segments during which glucose changed and during which very frequent reference blood glucose monitoring was performed. However, to minimize confounding effects of noise and calibration error, we excluded data segments in which there was substantial sensor error. After these exclusions, and combination of data from duplicate sensors, there were 72 analysable data segments (36 for rising glucose, 36 for falling). We measured lag in two ways: (1) the time delay at the vertical mid-point of the glucose change (regression delay); and (2) determination of the optimal time shift required to minimize the difference between glucose sensor signals and blood glucose values drawn concurrently. RESULTS: Using the regression delay method, the mean sensor lag for rising vs. falling glucose segments was 8.9 min (95%CI 6.1-11.6) vs. 1.5 min (95%CI -2.6 to 5.5, P<0.005). Using the time shift optimization method, results were similar, with a lag that was higher for rising than for falling segments [8.3 (95%CI 5.8-10.7) vs. 1.5 min (95% CI -2.2 to 5.2), P<0.001]. Commensurate with the lag results, sensor accuracy was greater during falling than during rising glucose segments. CONCLUSIONS: In Type 1 diabetes, when noise and calibration error are minimized to reduce effects that confound delay measurement, subcutaneous glucose sensors demonstrate a shorter lag duration and greater accuracy when glucose is falling than when rising.


Asunto(s)
Técnicas Biosensibles/instrumentación , Glucemia/metabolismo , Diabetes Mellitus Tipo 1/sangre , Femenino , Humanos , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Masculino , Persona de Mediana Edad , Monitoreo Fisiológico/instrumentación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda