Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
2.
Nat Immunol ; 18(12): 1288-1298, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29144501

RESUMEN

Progress at the beginning of the 21st century transformed the perception of complement from that of a blood-based antimicrobial system to that of a global regulator of immunity and tissue homeostasis. More recent years have witnessed remarkable advances in structure-function insights and understanding of the mechanisms and locations of complement activation, which have added new layers of complexity to the biology of complement. This complexity is readily reflected by the multifaceted and contextual involvement of complement-driven networks in a wide range of inflammatory and neurodegenerative disorders and cancer. This Review provides an updated view of new and previously unanticipated functions of complement and how these affect immunity and disease pathogenesis.


Asunto(s)
Activación de Complemento/inmunología , Proteínas del Sistema Complemento/inmunología , Inmunidad Innata/inmunología , Linfocitos T CD4-Positivos/inmunología , Proteínas del Sistema Complemento/metabolismo , Homeostasis/inmunología , Humanos , Inflamación/inmunología , Neoplasias/inmunología
4.
Semin Immunol ; 59: 101633, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787973

RESUMEN

The eye presents a unique opportunity for complement component 3 (C3) therapeutics. Drugs can be delivered directly to specific parts of the eye, and growing evidence has established a pivotal role for C3 in age-related macular degeneration (AMD). Emerging data show that C3 may be important to the pathophysiology of other eye diseases as well. This article will discuss the location of C3 expression in the eye as well as the preclinical and clinical data regarding C3's functions in AMD. We will provide a comprehensive review of developing C3 inhibitors for the eye, including the Phase 2 and 3 data for the C3 inhibitor pegcetacoplan as a treatment for the geographic atrophy of AMD. Developing evidence also points toward C3 as a therapeutic target for stages of AMD preceding geographic atrophy. We will also discuss data illuminating C3's relationship to other eye diseases, such as Stargardt disease, diabetic retinopathy, and glaucoma. In addition to being a converging point and centerpiece of the complement cascade, C3 has broad effects as a multifaceted controller of opsonophagocytosis, microglia/macrophage recruitment, and downstream terminal pathway activity. C3 is a crucial player in the pathophysiology of AMD but also seems to have importance in other diseases that are major causes of blindness. Directions for further investigation will be highlighted, as culminating evidence suggests that we may be approaching an era of C3 therapeutics for the eye.


Asunto(s)
Atrofia Geográfica , Degeneración Macular , Humanos , Atrofia Geográfica/tratamiento farmacológico , Atrofia Geográfica/etiología , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/complicaciones , Activación de Complemento
5.
Semin Immunol ; 59: 101608, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35691883

RESUMEN

Periodontitis is an inflammatory disease caused by biofilm accumulation and dysbiosis in subgingival areas surrounding the teeth. If not properly treated, this oral disease may result in tooth loss and consequently poor esthetics, deteriorated masticatory function and compromised quality of life. Epidemiological and clinical intervention studies indicate that periodontitis can potentially aggravate systemic diseases, such as, cardiovascular disease, type 2 diabetes mellitus, rheumatoid arthritis, and Alzheimer disease. Therefore, improvements in the treatment of periodontal disease may benefit not only oral health but also systemic health. The complement system is an ancient host defense system that plays pivotal roles in immunosurveillance and tissue homeostasis. However, complement has unwanted consequences if not controlled appropriately or excessively activated. Complement overactivation has been observed in patients with periodontitis and in animal models of periodontitis and drives periodontal inflammation and tissue destruction. This review places emphasis on a promising periodontal host-modulation therapy targeting the complement system, namely the complement C3-targeting drug, AMY-101. AMY-101 has shown safety and efficacy in reducing gingival inflammation in a recent Phase 2a clinical study. We also discuss the potential of AMY-101 to treat peri-implant inflammatory conditions, where complement also seems to be involved and there is an urgent unmet need for effective treatment.


Asunto(s)
Diabetes Mellitus Tipo 2 , Periodontitis , Animales , Humanos , Complemento C3 , Calidad de Vida , Periodontitis/terapia , Inflamación
6.
Semin Immunol ; 60: 101640, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35853795

RESUMEN

Patients in the intensive care unit (ICU) often straddle the divide between life and death. Understanding the complex underlying pathomechanisms relevant to such situations may help intensivists select broadly acting treatment options that can improve the outcome for these patients. As one of the most important defense mechanisms of the innate immune system, the complement system plays a crucial role in a diverse spectrum of diseases that can necessitate ICU admission. Among others, myocardial infarction, acute lung injury/acute respiratory distress syndrome (ARDS), organ failure, and sepsis are characterized by an inadequate complement response, which can potentially be addressed via promising intervention options. Often, ICU monitoring and existing treatment options rely on massive intervention strategies to maintain the function of vital organs, and these approaches can further contribute to an unbalanced complement response. Artificial surfaces of extracorporeal organ support devices, transfusion of blood products, and the application of anticoagulants can all trigger or amplify undesired complement activation. It is, therefore, worth pursuing the evaluation of complement inhibition strategies in the setting of ICU treatment. Recently, clinical studies in COVID-19-related ARDS have shown promising effects of central inhibition at the level of C3 and paved the way for prospective investigation of this approach. In this review, we highlight the fundamental and often neglected role of complement in the ICU, with a special focus on targeted complement inhibition. We will also consider complement substitution therapies to temporarily counteract a disease/treatment-related complement consumption.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Complemento C3 , Estudios Prospectivos , COVID-19/terapia , Unidades de Cuidados Intensivos , Síndrome de Dificultad Respiratoria/terapia , Activación de Complemento
7.
J Immunol ; 211(3): 453-461, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37306457

RESUMEN

A minimized version of complement factor H (FH), designated mini-FH, was previously engineered combining the N-terminal regulatory domains (short consensus repeat [SCR]1-4) and C-terminal host-surface recognition domains (SCR19-20) of the parent molecule. Mini-FH conferred enhanced protection, as compared with FH, in an ex vivo model of paroxysmal nocturnal hemoglobinuria driven by alternative pathway dysregulation. In the current study, we tested whether and how mini-FH could block another complement-mediated disease, namely periodontitis. In a mouse model of ligature-induced periodontitis (LIP), mini-FH inhibited periodontal inflammation and bone loss in wild-type mice. Although LIP-subjected C3-deficient mice are protected relative to wild-type littermates and exhibit only modest bone loss, mini-FH strikingly inhibited bone loss even in C3-deficient mice. However, mini-FH failed to inhibit ligature-induced bone loss in mice doubly deficient in C3 and CD11b. These findings indicate that mini-FH can inhibit experimental periodontitis even in a manner that is independent of its complement regulatory activity and is mediated by complement receptor 3 (CD11b/CD18). Consistent with this notion, a complement receptor 3-interacting recombinant FH segment that lacks complement regulatory activity (specifically encompassing SCRs 19 and 20; FH19-20) was also able to suppress bone loss in LIP-subjected C3-deficient mice. In conclusion, mini-FH appears to be a promising candidate therapeutic for periodontitis by virtue of its ability to suppress bone loss via mechanisms that both include and go beyond its complement regulatory activity.


Asunto(s)
Factor H de Complemento , Periodontitis , Ratones , Animales , Factor H de Complemento/metabolismo , Vía Alternativa del Complemento , Proteínas del Sistema Complemento , Receptores de Complemento
8.
J Immunol ; 209(7): 1370-1378, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36028293

RESUMEN

In both mice and humans, complement and Th17 cells have been implicated in periodontitis, an oral microbiota-driven inflammatory disease associated with systemic disorders. A recent clinical trial showed that a complement C3 inhibitor (AMY-101) causes sustainable resolution of periodontal inflammation, the main effector of tissue destruction in this oral disease. Although both complement and Th17 are required for periodontitis, it is uncertain how these immune components cooperate in disease development. In this study, we dissected the complement-Th17 relationship in the setting of ligature-induced periodontitis (LIP), a model that previously established that microbial dysbiosis drives Th17 cell expansion and periodontal bone loss. Complement was readily activated in the periodontal tissue of LIP-subjected mice but not when the mice were placed on broad-spectrum antibiotics. Microbiota-induced complement activation generated critical cytokines, IL-6 and IL-23, which are required for Th17 cell expansion. These cytokines as well as Th17 accumulation and IL-17 expression were significantly suppressed in LIP-subjected C3-deficient mice relative to wild-type controls. As IL-23 has been extensively studied in periodontitis, we focused on IL-6 and showed that LIP-induced IL-17 and bone loss required intact IL-6 receptor signaling in the periodontium. LIP-induced IL-6 was predominantly produced by gingival epithelial cells that upregulated C3a receptor upon LIP challenge. Experiments in human gingival epithelial cells showed that C3a upregulated IL-6 production in cooperation with microbial stimuli that upregulated C3a receptor expression in ERK1/2- and JNK-dependent manner. In conclusion, complement links the periodontal microbiota challenge to Th17 cell accumulation and thus integrates complement- and Th17-driven immunopathology in periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Animales , Antibacterianos , Complemento C3 , Humanos , Interleucina-17 , Interleucina-23 , Interleucina-6/metabolismo , Ratones , Receptores de Interleucina-6 , Células Th17
9.
Clin Immunol ; 235: 108785, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34147650

RESUMEN

The FDA approval of pegcetacoplan (Empaveli), a PEGylated compstatin-based C3 therapeutic, as a new treatment for paroxysmal nocturnal hemoglobinuria (PNH) marks a milestone in the history of complement drug discovery. Almost 15 years after the approval of the first complement-specific drug for PNH, the anti-C5 antibody eculizumab, a novel class of complement inhibitors with a distinct mechanism of action finally enters the clinic. This landmark decision broadens the spectrum of available complement therapeutics, offering patients with unmet clinical needs or insufficient responses to anti-C5 therapy an alternative treatment option with a broad activity profile. Here we present a brief historical account of this newly approved complement drug, consolidating its approval within the long research record of the compstatin family of peptidic C3 inhibitors.


Asunto(s)
Complemento C3/antagonistas & inhibidores , Hemoglobinuria Paroxística/tratamiento farmacológico , Péptidos Cíclicos/farmacología , Complemento C3/metabolismo , Aprobación de Drogas , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos Cíclicos/química
11.
Clin Immunol ; 215: 108450, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32360516

RESUMEN

Acute respiratory distress syndrome (ARDS) is a devastating clinical manifestation of COVID-19 pneumonia and is mainly based on an immune-driven pathology. Mounting evidence suggests that COVID-19 is fueled by a maladaptive host inflammatory response that involves excessive activation of innate immune pathways. While a "cytokine storm" involving IL-6 and other cytokines has been documented, complement C3 activation has been implicated as an initial effector mechanism that exacerbates lung injury in preclinical models of SARS-CoV infection. C3-targeted intervention may provide broader therapeutic control of complement-mediated inflammatory damage in COVID-19 patients. Herein, we report the clinical course of a patient with severe ARDS due to COVID-19 pneumonia who was safely and successfully treated with the compstatin-based complement C3 inhibitor AMY-101.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Activación de Complemento/efectos de los fármacos , Complemento C3/antagonistas & inhibidores , Inactivadores del Complemento/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Péptidos Cíclicos/uso terapéutico , Neumonía Viral/tratamiento farmacológico , Anciano , Antivirales/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/inmunología , Fibrilación Atrial/patología , Fibrilación Atrial/virología , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Humanos , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/inmunología , Hipercolesterolemia/patología , Hipercolesterolemia/virología , Hipertensión/tratamiento farmacológico , Hipertensión/inmunología , Hipertensión/patología , Hipertensión/virología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Masculino , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/patología , Neumonía Viral/virología , SARS-CoV-2 , Resultado del Tratamiento
12.
Clin Immunol ; 214: 108391, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32229292

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss among the elderly population. Genetic studies in susceptible individuals have linked this ocular disease to deregulated complement activity that culminates in increased C3 turnover, retinal inflammation and photoreceptor loss. Therapeutic targeting of C3 has therefore emerged as a promising strategy for broadly intercepting the detrimental proinflammatory consequences of complement activation in the retinal tissue. In this regard, a PEGylated second-generation derivative of the compstatin family of C3-targeted inhibitors is currently in late-stage clinical development as a treatment option for geographic atrophy, an advanced form of AMD which lacks approved therapy. While efficacy has been strongly suggested in phase 2 clinical trials, crucial aspects still remain to be defined with regard to the ocular bioavailability, tissue distribution and residence, and dosing frequency of such inhibitors in AMD patients. Here we report the intraocular distribution and pharmacokinetic profile of the fourth-generation compstatin analog, Cp40-KKK in cynomolgus monkeys following a single intravitreal injection. Using a sensitive surface plasmon resonance (SPR)-based competition assay and ELISA, we have quantified both the amount of inhibitor and the concentration of C3 retained in the vitreous of Cp40-KKK-injected animals. Cp40-KKK displays prolonged intraocular residence, being detected at C3-saturating levels for over 3 months after a single intravitreal injection. Moreover, we have probed the distribution of Cp40-KKK within the ocular tissue by means of immunohistochemistry and highly specific anti-Cp40-KKK antibodies. Both C3 and Cp40-KKK were detected in the retinal tissue of inhibitor-injected animals, with prominent co-localization in the choroid one-month post intravitreal injection. These results attest to the high retinal tissue penetrance and target-driven distribution of Cp40-KKK. Given its subnanomolar binding affinity and prolonged ocular residence, Cp40-KKK constitutes a promising drug candidate for ocular pathologies underpinned by deregulated C3 activation.


Asunto(s)
Complemento C3/antagonistas & inhibidores , Ojo/química , Anciano , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Inyecciones Intravítreas , Macaca fascicularis , Retina/química , Factores de Tiempo , Distribución Tisular
13.
Clin Immunol ; 220: 108598, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32961333

RESUMEN

Growing clinical evidence has implicated complement as a pivotal driver of COVID-19 immunopathology. Deregulated complement activation may fuel cytokine-driven hyper-inflammation, thrombotic microangiopathy and NET-driven immunothrombosis, thereby leading to multi-organ failure. Complement therapeutics have gained traction as candidate drugs for countering the detrimental consequences of SARS-CoV-2 infection. Whether blockade of terminal complement effectors (C5, C5a, or C5aR1) may elicit similar outcomes to upstream intervention at the level of C3 remains debated. Here we compare the efficacy of the C5-targeting monoclonal antibody eculizumab with that of the compstatin-based C3-targeted drug candidate AMY-101 in small independent cohorts of severe COVID-19 patients. Our exploratory study indicates that therapeutic complement inhibition abrogates COVID-19 hyper-inflammation. Both C3 and C5 inhibitors elicit a robust anti-inflammatory response, reflected by a steep decline in C-reactive protein and IL-6 levels, marked lung function improvement, and resolution of SARS-CoV-2-associated acute respiratory distress syndrome (ARDS). C3 inhibition afforded broader therapeutic control in COVID-19 patients by attenuating both C3a and sC5b-9 generation and preventing FB consumption. This broader inhibitory profile was associated with a more robust decline of neutrophil counts, attenuated neutrophil extracellular trap (NET) release, faster serum LDH decline, and more prominent lymphocyte recovery. These early clinical results offer important insights into the differential mechanistic basis and underlying biology of C3 and C5 inhibition in COVID-19 and point to a broader pathogenic involvement of C3-mediated pathways in thromboinflammation. They also support the evaluation of these complement-targeting agents as COVID-19 therapeutics in large prospective trials.


Asunto(s)
Betacoronavirus/patogenicidad , Complemento C3/antagonistas & inhibidores , Complemento C5/antagonistas & inhibidores , Inactivadores del Complemento/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Factores Inmunológicos/uso terapéutico , Neumonía Viral/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Biomarcadores/sangre , Proteína C-Reactiva/metabolismo , COVID-19 , Estudios de Cohortes , Activación de Complemento/efectos de los fármacos , Complemento C3/genética , Complemento C3/inmunología , Complemento C5/genética , Complemento C5/inmunología , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Trampas Extracelulares/efectos de los fármacos , Femenino , Expresión Génica , Humanos , Interleucina-6/metabolismo , Masculino , Persona de Mediana Edad , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/virología , Pandemias , Péptidos Cíclicos/uso terapéutico , Neumonía Viral/complicaciones , Neumonía Viral/inmunología , Neumonía Viral/virología , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/virología , SARS-CoV-2 , Índice de Severidad de la Enfermedad
14.
Trends Immunol ; 38(6): 383-394, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28416449

RESUMEN

Complement dysregulation underlies several inflammatory disorders, and terminal complement inhibition has thus far afforded significant clinical gains. Nonetheless, emerging pathologies, fueled by complement imbalance and therapy-skewing genetic variance, underscore the need for more comprehensive, disease-tailored interventions. Modulation at the level of C3, a multifaceted orchestrator of the complement cascade, opens up prospects for broader therapeutic efficacy by targeting multiple pathogenic pathways modulated by C3-triggered proinflammatory crosstalk. Notably, C3 intervention is emerging as a viable therapeutic strategy for renal disorders with predominantly complement-driven etiology, such as C3 glomerulopathy (C3G). Using C3G as a paradigm, we argue that concerns about the feasibility of long-term C3 intervention need to be placed into perspective and weighed against actual therapeutic outcomes in prospective clinical trials.


Asunto(s)
Complemento C3/metabolismo , Glomerulonefritis Membranosa/tratamiento farmacológico , Enfermedades del Complejo Inmune/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Animales , Anticuerpos Bloqueadores/uso terapéutico , Ensayos Clínicos como Asunto , Activación de Complemento , Complemento C3/inmunología , Medicina Basada en la Evidencia , Glomerulonefritis Membranosa/inmunología , Humanos , Enfermedades del Complejo Inmune/inmunología , Inflamación/inmunología , Modelos Inmunológicos , Terapia Molecular Dirigida
15.
Immunol Rev ; 274(1): 33-58, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27782325

RESUMEN

As a preformed defense system, complement faces a delicate challenge in providing an immediate, forceful response to pathogens even at first encounter, while sparing host cells in the process. For this purpose, it engages a tightly regulated network of plasma proteins, cell surface receptors, and regulators. Complement component C3 plays a particularly versatile role in this process by keeping the cascade alert, acting as a point of convergence of activation pathways, fueling the amplification of the complement response, exerting direct effector functions, and helping to coordinate downstream immune responses. In recent years, it has become evident that nature engages the power of C3 not only to clear pathogens but also for a variety of homeostatic processes ranging from tissue regeneration and synapse pruning to clearing debris and controlling tumor cell progression. At the same time, its central position in immune surveillance makes C3 a target for microbial immune evasion and, if improperly engaged, a trigger point for various clinical conditions. In our review, we look at the versatile roles and evolutionary journey of C3, discuss new insights into the molecular basis for C3 function, provide examples of disease involvement, and summarize the emerging potential of C3 as a therapeutic target.


Asunto(s)
Activación de Complemento , Complemento C3/inmunología , Enfermedades del Sistema Inmune/inmunología , Inmunidad Innata , Inmunoterapia/tendencias , Animales , Evolución Biológica , Humanos
16.
Clin Immunol ; 198: 102-105, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30472267

RESUMEN

Owing to an increasing shortage of donor organs, the majority of patients with end-stage kidney disease remains reliant on extracorporeal hemodialysis (HD) in order to counter the lifelong complications of a failing kidney. While HD remains a life-saving option for these patients, mounting evidence suggests that it also fuels a vicious cycle of thromboinflammation that can increase the risk of cardiovascular disease. During HD, blood-borne innate immune systems become inappropriately activated on the biomaterial surface, instigating proinflammatory reactions that can alter endothelial and vascular homeostasis. Complement activation, early during the HD process, has been shown to fuel a multitude of detrimental thromboinflammatory reactions that collectively contribute to patient morbidity. Here we discuss emerging aspects of complement's involvement in HD-induced inflammation and put forth the concept that targeted intervention at the level of C3 might constitute a promising therapeutic approach in HD patients.


Asunto(s)
Complemento C3/antagonistas & inhibidores , Inactivadores del Complemento/uso terapéutico , Inflamación/tratamiento farmacológico , Diálisis Renal/efectos adversos , Humanos
17.
Clin Immunol ; 197: 96-106, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30217791

RESUMEN

The central component of the complement cascade, C3, is involved in various biological functions, including opsonization of foreign bodies, clearance of waste material, activation of immune cells, and triggering of pathways controlling development. Given its broad role in immune responses, particularly in phagocytosis and the clearance of microbes, a deficiency in complement C3 in humans is often associated with multiple bacterial infections. Interestingly, an increased susceptibility to infections appears to occur mainly in the first two years of life and then wanes throughout adulthood. In view of the well-established connection between C3 deficiency and infections, therapeutic inhibition of complement at the level of C3 is often considered with caution or disregarded. We therefore set out to investigate the immune and biochemical profile of non-human primates under prolonged treatment with the C3 inhibitor compstatin (Cp40 analog). Cynomolgus monkeys were dosed subcutaneously with Cp40, resulting in systemic inhibition of C3, for 1 week, 2 weeks, or 3 months. Plasma concentrations of both C3 and Cp40 were measured periodically and complete saturation of plasma C3 was confirmed. No differences in hematological, biochemical, or immunological parameters were identified in the blood or tissues of animals treated with Cp40 when compared to those injected with vehicle alone. Further, skin wounds showed no signs of infection in those treated with Cp40. In fact, Cp40 treatment was associated with a trend toward accelerated wound healing when compared with the control group. In addition, a biodistribution study in a rhesus monkey indicated that the distribution of Cp40 in the body is associated with the presence of C3, concentrating in organs that accumulate blood and produce C3. Overall, our data suggest that systemic C3 inhibition in healthy adult non-human primates is not associated with a weakened immune system or susceptibility to infections.


Asunto(s)
Complemento C3/antagonistas & inhibidores , Inactivadores del Complemento/toxicidad , Péptidos Cíclicos/toxicidad , Cicatrización de Heridas/inmunología , Infección de Heridas/epidemiología , Animales , Complemento C3/inmunología , Complemento C3/metabolismo , Inactivadores del Complemento/farmacocinética , Macaca fascicularis , Macaca mulatta , Péptidos Cíclicos/farmacocinética , Factores de Tiempo , Distribución Tisular , Heridas y Lesiones/inmunología
18.
J Immunol ; 195(8): 3946-58, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26342032

RESUMEN

Staphylococcus aureus can cause a broad range of potentially fatal inflammatory complications (e.g., sepsis and endocarditis). Its emerging antibiotic resistance and formidable immune evasion arsenal have emphasized the need for more effective antimicrobial approaches. Complement is an innate immune sensor that rapidly responds to bacterial infection eliciting C3-mediated opsonophagocytic and immunomodulatory responses. Extracellular fibrinogen-binding protein (Efb) is a key immune evasion protein of S. aureus that intercepts complement at the level of C3. To date, Efb has not been explored as a target for mAb-based antimicrobial therapeutics. In this study, we have isolated donor-derived anti-Efb IgGs that attenuate S. aureus survival through enhanced neutrophil killing. A phage library screen yielded mini-Abs that selectively inhibit the interaction of Efb with C3 partly by disrupting contacts essential for complex formation. Surface plasmon resonance-based kinetic analysis enabled the selection of mini-Abs with favorable Efb-binding profiles as therapeutic leads. Mini-Ab-mediated blockade of Efb attenuated S. aureus survival in a whole blood model of bacteremia. This neutralizing effect was associated with enhanced neutrophil-mediated killing of S. aureus, increased C5a release, and modulation of IL-6 secretion. Finally, these mini-Abs afforded protection from S. aureus-induced bacteremia in a murine renal abscess model, attenuating bacterial inflammation in kidneys. Overall, these findings are anticipated to pave the way toward novel Ab-based therapeutics for S. aureus-related diseases.


Asunto(s)
Anticuerpos Antibacterianos/farmacología , Bacteriemia/tratamiento farmacológico , Proteínas Bacterianas/antagonistas & inhibidores , Anticuerpos de Cadena Única/farmacología , Staphylococcus aureus/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Bacteriemia/inmunología , Proteínas Bacterianas/inmunología , Complemento C5a/inmunología , Modelos Animales de Enfermedad , Humanos , Interleucina-6/inmunología , Ratones , Anticuerpos de Cadena Única/inmunología
19.
Semin Immunol ; 25(1): 29-38, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23684626

RESUMEN

Adult tissue plasticity, cell reprogramming, and organ regeneration are major challenges in the field of modern regenerative medicine. Devising strategies to increase the regenerative capacity of tissues holds great promise for dealing with donor organ shortages and low transplantation outcomes and also provides essential impetus to tissue bioengineering approaches for organ repair and replacement. The inherent ability of cells to reprogram their fate by switching into an embryonic-like, pluripotent progenitor state is an evolutionary vestige that in mammals has been retained mostly in fetal tissues and persists only in a few organs of the adult body. Tissue regeneration reflects the capacity of terminally differentiated cells to re-enter the cell cycle and proliferate in response to acute injury or environmental stress signals. In lower vertebrates, this regenerative capacity extends to several organs and remarkably culminates in precise tissue patterning, through cellular transdifferentiation and complex morphogenetic processes that can faithfully reconstruct entire body parts. Many lessons have been learned from robust regeneration models in amphibians such as the newt and axolotl. However, the dynamic interactions between the regenerating tissue, the surrounding stroma, and the host immune response, as it adapts to the actively proliferating tissue, remain ill-defined. The regenerating zone, through a sequence of distinct molecular events, adopts phenotypic plasticity and undergoes rigorous tissue remodeling that, in turn, evokes a significant inflammatory response. Complement is a primordial sentinel of the innate immune response that engages in multiple inflammatory cascades as it becomes activated during tissue injury and remodeling. In this respect, complement proteins have been implicated in tissue and organ regeneration in both urodeles and mammals. Distinct complement-triggered pathways have been shown to modulate critical responses that promote tissue reprogramming, pattern formation, and regeneration across phylogenesis. This article will discuss the mechanistic insights underlying the crosstalk of complement with cytokine and growth factor signaling pathways that drive tissue regeneration and will provide a unified conceptual framework for considering complement modulation as a novel target for regenerative therapeutics.


Asunto(s)
Proteínas del Sistema Complemento/fisiología , Citocinas/inmunología , Regeneración/inmunología , Células Madre/fisiología , Animales , Humanos , Filogenia , Receptor Cross-Talk/inmunología , Medicina Regenerativa/tendencias , Transducción de Señal/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda