Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
PLoS Pathog ; 17(1): e1009292, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33507952

RESUMEN

The human airway epithelium is the initial site of SARS-CoV-2 infection. We used flow cytometry and single cell RNA-sequencing to understand how the heterogeneity of this diverse cell population contributes to elements of viral tropism and pathogenesis, antiviral immunity, and treatment response to remdesivir. We found that, while a variety of epithelial cell types are susceptible to infection, ciliated cells are the predominant cell target of SARS-CoV-2. The host protease TMPRSS2 was required for infection of these cells. Importantly, remdesivir treatment effectively inhibited viral replication across cell types, and blunted hyperinflammatory responses. Induction of interferon responses within infected cells was rare and there was significant heterogeneity in the antiviral gene signatures, varying with the burden of infection in each cell. We also found that heavily infected secretory cells expressed abundant IL-6, a potential mediator of COVID-19 pathogenesis.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/fisiología , Tropismo Viral , Adenosina Monofosfato/farmacología , Alanina/farmacología , COVID-19/genética , Epitelio/inmunología , Epitelio/virología , Humanos , Interferones/genética , Interferones/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Pulmón/inmunología , Pulmón/virología , SARS-CoV-2/efectos de los fármacos , Tropismo Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
2.
J Immunol ; 206(5): 931-935, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33441437

RESUMEN

The magnitude of SARS-CoV-2-specific T cell responses correlates inversely with human disease severity, suggesting T cell involvement in primary control. Whereas many COVID-19 vaccines focus on establishing humoral immunity to viral spike protein, vaccine-elicited T cell immunity may bolster durable protection or cross-reactivity with viral variants. To better enable mechanistic and vaccination studies in mice, we identified a dominant CD8 T cell SARS-CoV-2 nucleoprotein epitope. Infection of human ACE2 transgenic mice with SARS-CoV-2 elicited robust responses to H2-Db/N219-227, and 40% of HLA-A*02+ COVID-19 PBMC samples isolated from hospitalized patients responded to this peptide in culture. In mice, i.m. prime-boost nucleoprotein vaccination with heterologous vectors favored systemic CD8 T cell responses, whereas intranasal boosting favored respiratory immunity. In contrast, a single i.v. immunization with recombinant adenovirus established robust CD8 T cell memory both systemically and in the respiratory mucosa.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Epítopos de Linfocito T/inmunología , SARS-CoV-2/inmunología , Vacunación/métodos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/virología , Células Cultivadas , Proteínas de la Nucleocápside de Coronavirus/inmunología , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/inmunología , Antígeno HLA-A2/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
J Immunol ; 207(2): 376-379, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34193597

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Neutralizing Abs target the receptor binding domain of the spike (S) protein, a focus of successful vaccine efforts. Concerns have arisen that S-specific vaccine immunity may fail to neutralize emerging variants. We show that vaccination with a human adenovirus type 5 vector expressing the SARS-CoV-2 nucleocapsid (N) protein can establish protective immunity, defined by reduced weight loss and viral load, in both Syrian hamsters and K18-hACE2 mice. Challenge of vaccinated mice was associated with rapid N-specific T cell recall responses in the respiratory mucosa. This study supports the rationale for including additional viral Ags in SARS-CoV-2 vaccines, even if they are not a target of neutralizing Abs, to broaden epitope coverage and immune effector mechanisms.


Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , Línea Celular , Chlorocebus aethiops , Cricetinae , Femenino , Memoria Inmunológica/inmunología , Recuento de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfoproteínas/inmunología , Vacunación , Células Vero
4.
J Infect Dis ; 223(8): 1339-1344, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33476387

RESUMEN

Coronavirus disease 2019 (COVID-19) outcomes are linked to host immune responses and may be affected by antiviral therapy. We investigated antibody and cytokine responses in ACTT-1 study participants enrolled at our center. We studied serum specimens from 19 hospitalized adults with COVID-19 randomized to treatment with remdesivir or placebo. We assessed severe acute respiratory syndrome coronavirus 2 antibody responses and identified cytokine signatures, using hierarchical clustering. We identified no clear immunologic trends attributable to remdesivir treatment. Seven participants were initially seronegative at study enrollment, and all 4 deaths occurred in this group with more recent symptom onset. We identified 3 dominant cytokine signatures, demonstrating different disease trajectories.


Asunto(s)
COVID-19/inmunología , COVID-19/mortalidad , Inmunidad/inmunología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/inmunología , Adenosina Monofosfato/uso terapéutico , Adulto , Alanina/análogos & derivados , Alanina/inmunología , Alanina/uso terapéutico , Anticuerpos Antivirales/inmunología , Antivirales/inmunología , Antivirales/uso terapéutico , COVID-19/virología , Citocinas/inmunología , Femenino , Humanos , Inmunidad/efectos de los fármacos , Masculino , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Tratamiento Farmacológico de COVID-19
5.
Transfusion ; 61(1): 17-23, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32935872

RESUMEN

BACKGROUND: The transfer of passive immunity with convalescent plasma is a promising strategy for treatment and prevention of COVID-19, but donors with a history of nonsevere disease are serologically heterogenous. The relationship between SARS-Cov-2 antigen-binding activity and neutralization activity in this population of donors has not been defined. STUDY DESIGN AND METHODS: Convalescent plasma units from 47 individuals with a history of nonsevere COVID-19 were assessed for antigen-binding activity of using three clinical diagnostic serology assays (Beckman, DiaSorin, and Roche) with different SARS-CoV-2 targets. These results were compared with functional neutralization activity using a fluorescent reporter strain of SARS-CoV-2 in a microwell assay. RESULTS: Positive correlations of varying strength (Spearman r = 0.37-0.52) between antigen binding and viral neutralization were identified. Donors age 48 to 75 years had the highest neutralization activity. Units in the highest tertile of binding activity for each assay were enriched (75%-82%) for those with the highest levels of neutralization. CONCLUSION: The strength of the relationship between antigen-binding activity and neutralization varies depending on the clinical assay used. Units in the highest tertile of binding activity for each assay are predominantly comprised of those with the greatest neutralization activity.


Asunto(s)
SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/terapia , Prueba Serológica para COVID-19 , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunización Pasiva , Inmunoglobulina G/inmunología , SARS-CoV-2/patogenicidad , Pruebas Serológicas , Sueroterapia para COVID-19
6.
J Virol ; 93(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30842321

RESUMEN

Most human immunodeficiency virus type 1 (HIV-1) infections begin at mucosal surfaces. Providing a barrier of protection at these may assist in combating the earliest events in infection. Systemic immunization by intramuscular (i.m.) injection can drive mucosal immune responses, but there are data suggesting that mucosal immunization can better educate these mucosal immune responses. To test this, rhesus macaques were immunized with replicating single-cycle adenovirus (SC-Ad) vaccines expressing clade B HIV-1 gp160 by the intranasal (i.n.) and i.m. routes to compare mucosal and systemic routes of vaccination. SC-Ad vaccines generated significant circulating antibody titers against Env after a single i.m. immunization. Switching the route of second immunization with the same SC-Ad serotype allowed a significant boost in these antibody levels. When these animals were boosted with envelope protein, envelope-binding antibodies were amplified 100-fold, but qualitatively different immune responses were generated. Animals immunized by only the i.m. route had high peripheral T follicular helper (pTfh) cell counts in blood but low Tfh cell counts in lymph nodes. Conversely, animals immunized by the i.n. route had high Tfh cell counts in lymph nodes but low pTfh cell counts in the blood. Animals immunized by only the i.m. route had lower antibody-dependent cellular cytotoxicity (ADCC) antibody activity, whereas animals immunized by the mucosal i.n. route had higher ADCC antibody activity. When these Env-immunized animals were challenged rectally with simian-human immunodeficiency virus (SHIV) strain SF162P3 (SHIVSF162P3), they all became infected. However, mucosally SC-Ad-immunized animals had lower viral loads in their gastrointestinal tracts. These data suggest that there may be benefits in educating the immune system at mucosal sites during HIV vaccination.IMPORTANCE HIV-1 infections usually start at a mucosal surface after sexual contact. Creating a barrier of protection at these mucosal sites may be a good strategy for to protect against HIV-1 infections. While HIV-1 enters at mucosa, most vaccines are not delivered here. Most are instead injected into the muscle, a site well distant and functionally different than mucosal tissues. This study tested if delivering HIV vaccines at mucosa or in the muscle makes a difference in the quality, quantity, and location of immune responses against the virus. These data suggest that there are indeed advantages to educating the immune system at mucosal sites with an HIV-1 vaccine.


Asunto(s)
Vacunas contra el SIDA/inmunología , VIH-1/inmunología , Inmunización/métodos , Adenoviridae/inmunología , Administración Intranasal/métodos , Animales , Anticuerpos Antivirales/inmunología , Productos del Gen env/inmunología , Infecciones por VIH/inmunología , Inmunidad Innata/inmunología , Inmunidad Mucosa/inmunología , Inyecciones Intramusculares/métodos , Macaca mulatta/virología , Vacunas contra el SIDAS/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Vacunación/métodos , Carga Viral
7.
J Infect Dis ; 218(12): 1883-1889, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-29982595

RESUMEN

Recent West African Ebola virus (EBOV) epidemics have led to testing different anti-EBOV vaccines, including a replication-defective adenovirus (RD-Ad) vector (ChAd3-EBOV) and an infectious, replication-competent recombinant vesicular stomatitis virus expressing the EBOV glycoprotein (rVSV-EBOV; also known as rVSV-ZEBOV). While RD-Ads elicit protection, when scaled up to human trials, the level of protection may be much lower than that of vaccines containing viruses that can replicate. Although a replication-competent Ad (RC-Ad) vaccine might generate a level of protection approximating that of rVSV, this infectious vector would also risk causing adenovirus disease. We recently described a "single-cycle" adenovirus (SC-Ad) vector that amplifies antigen genes like RC-Ad, but that avoids the risk of adenovirus infection. Here we have tested an SC-Ad6 vector expressing the glycoprotein (GP) from a 2014 EBOV strain in mice, hamsters, and rhesus macaques. We show that SC-Ad6-EBOV GP induces a high level of serum antibodies in all species and mediates significant protection against pseudo-challenge with rVSV-EBOV expressing luciferase in mice and hamsters. These data suggest that SC-Ad6-EBOV GP may be useful during future EBOV outbreaks.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Células A549 , Adenoviridae , Envejecimiento , Animales , Chlorocebus aethiops , Cricetinae , Relación Dosis-Respuesta Inmunológica , Vacunas contra el Virus del Ébola/administración & dosificación , Ebolavirus/fisiología , Ensayo de Inmunoadsorción Enzimática , Femenino , Glicoproteínas/inmunología , Células HEK293 , Humanos , Esquemas de Inmunización , Macaca mulatta , Mesocricetus , Ratones , Vacunas Sintéticas/inmunología , Células Vero , Replicación Viral
8.
J Virol ; 91(2)2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27807231

RESUMEN

Head-to-head comparisons of conventional influenza vaccines with adenovirus (Ad) gene-based vaccines demonstrated that these viral vectors can mediate more potent protection against influenza virus infection in animal models. In most cases, Ad vaccines are engineered to be replication-defective (RD-Ad) vectors. In contrast, replication-competent Ad (RC-Ad) vaccines are markedly more potent but risk causing adenovirus diseases in vaccine recipients and health care workers. To harness antigen gene replication but avoid production of infectious virions, we developed "single-cycle" adenovirus (SC-Ad) vectors. Previous work demonstrated that SC-Ads amplify transgene expression 100-fold and produce markedly stronger and more persistent immune responses than RD-Ad vectors in Syrian hamsters and rhesus macaques. To test them as potential vaccines, we engineered RD and SC versions of adenovirus serotype 6 (Ad6) to express the hemagglutinin (HA) gene from influenza A/PR/8/34 virus. We show here that it takes approximately 33 times less SC-Ad6 than RD-Ad6 to produce equal amounts of HA antigen in vitro SC-Ad produced markedly higher HA binding and hemagglutination inhibition (HAI) titers than RD-Ad in Syrian hamsters. SC-Ad-vaccinated cotton rats had markedly lower influenza titers than RD-Ad-vaccinated animals after challenge with influenza A/PR/8/34 virus. These data suggest that SC-Ads may be more potent vaccine platforms than conventional RD-Ad vectors and may have utility as "needle-free" mucosal vaccines. IMPORTANCE: Most adenovirus vaccines that are being tested are replication-defective adenoviruses (RD-Ads). This work describes testing newer single-cycle adenovirus (SC-Ad) vectors that replicate transgenes to amplify protein production and immune responses. We show that SC-Ads generate markedly more influenza virus hemagglutinin protein and require substantially less vector to generate the same immune responses as RD-Ad vectors. SC-Ads therefore hold promise to be more potent vectors and vaccines than current RD-Ad vectors.


Asunto(s)
Adenoviridae/genética , Vectores Genéticos/genética , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Replicación Viral , Administración Intranasal , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Línea Celular , Cricetinae , Replicación del ADN , ADN Complementario/genética , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunización , Virus de la Influenza A/genética , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Ratas , Proteínas Recombinantes de Fusión , Sigmodontinae
9.
PLoS Pathog ; 11(12): e1005311, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26633895

RESUMEN

For many emerging and re-emerging infectious diseases, definitive solutions via sterilizing adaptive immunity may require years or decades to develop, if they are even possible. The innate immune system offers alternative mechanisms that do not require antigen-specific recognition or a priori knowledge of the causative agent. However, it is unclear whether effective stable innate immune system activation can be achieved without triggering harmful autoimmunity or other chronic inflammatory sequelae. Here, we show that transgenic expression of a picornavirus RNA-dependent RNA polymerase (RdRP), in the absence of other viral proteins, can profoundly reconfigure mammalian innate antiviral immunity by exposing the normally membrane-sequestered RdRP activity to sustained innate immune detection. RdRP-transgenic mice have life-long, quantitatively dramatic upregulation of 80 interferon-stimulated genes (ISGs) and show profound resistance to normally lethal viral challenge. Multiple crosses with defined knockout mice (Rag1, Mda5, Mavs, Ifnar1, Ifngr1, and Tlr3) established that the mechanism operates via MDA5 and MAVS and is fully independent of the adaptive immune system. Human cell models recapitulated the key features with striking fidelity, with the RdRP inducing an analogous ISG network and a strict block to HIV-1 infection. This RdRP-mediated antiviral mechanism does not depend on secondary structure within the RdRP mRNA but operates at the protein level and requires RdRP catalysis. Importantly, despite lifelong massive ISG elevations, RdRP mice are entirely healthy, with normal longevity. Our data reveal that a powerfully augmented MDA5-mediated activation state can be a well-tolerated mammalian innate immune system configuration. These results provide a foundation for augmenting innate immunity to achieve broad-spectrum antiviral protection.


Asunto(s)
Genes Virales/inmunología , Inmunidad Innata/inmunología , ARN Polimerasa Dependiente del ARN/inmunología , Proteínas Virales/inmunología , Animales , Western Blotting , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunidad Innata/genética , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Picornaviridae/genética , Picornaviridae/inmunología , ARN Polimerasa Dependiente del ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virosis/inmunología , Virosis/prevención & control
10.
J Virol ; 89(15): 7735-47, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25972541

RESUMEN

UNLABELLED: Defective interfering RNAs (DI-RNAs) of the viral genome can form during infections of negative-strand RNA viruses and outgrow full-length viral genomes, thereby modulating the severity and duration of infection. Here we document the frequent de novo generation of copy-back DI-RNAs from independent rescue events both for a vaccine measles virus (vac2) and for a wild-type measles virus (IC323) as early as passage 1 after virus rescue. Moreover, vaccine and wild-type C-protein-deficient (C-protein-knockout [CKO]) measles viruses generated about 10 times more DI-RNAs than parental virus, suggesting that C enhances the processivity of the viral polymerase. We obtained the nucleotide sequences of 65 individual DI-RNAs, identified breakpoints and reinitiation sites, and predicted their structural features. Several DI-RNAs possessed clusters of A-to-G or U-to-C transitions. Sequences flanking these mutation sites were characteristic of those favored by adenosine deaminase acting on RNA-1 (ADAR1), which catalyzes in double-stranded RNA the C-6 deamination of adenosine to produce inosine, which is recognized as guanosine, a process known as A-to-I RNA editing. In individual DI-RNAs the transitions were of the same type and occurred on both sides of the breakpoint. These patterns of mutations suggest that ADAR1 edits unencapsidated DI-RNAs that form double-strand RNA structures. Encapsidated DI-RNAs were incorporated into virus particles, which reduced the infectivity of virus stocks. The CKO phenotype was dominant: DI-RNAs derived from vac2 with a CKO suppressed the replication of vac2, as shown by coinfections of interferon-incompetent lymphatic cells with viruses expressing different fluorescent reporter proteins. In contrast, coinfection with a C-protein-expressing virus did not counteract the suppressive phenotype of DI-RNAs. IMPORTANCE: Recombinant measles viruses (MVs) are in clinical trials as cancer therapeutics and as vectored vaccines for HIV-AIDS and other infectious diseases. The efficacy of MV-based vectors depends on their replication proficiency and immune activation capacity. Here we document that copy-back defective interfering RNAs (DI-RNAs) are generated by recombinant vaccine and wild-type MVs immediately after rescue. The MV C protein interferes with DI-RNA generation and may enhance the processivity of the viral polymerase. We frequently detected clusters of A-to-G or U-to-C transitions and noted that sequences flanking individual mutations contain motifs favoring recognition by the adenosine deaminase acting on RNA-1 (ADAR1). The consistent type of transitions on the DI-RNAs indicates that these are direct substrates for editing by ADAR1. The ADAR1-mediated biased hypermutation events are consistent with the protein kinase R (PKR)-ADAR1 balancing model of innate immunity activation. We show by coinfection that the C-defective phenotype is dominant.


Asunto(s)
Adenosina Desaminasa/genética , Virus del Sarampión/genética , Sarampión/enzimología , Mutación , ARN Interferente Pequeño/genética , ARN Viral/genética , Proteínas de Unión al ARN/genética , Proteínas no Estructurales Virales/genética , Adenosina Desaminasa/metabolismo , Regulación Viral de la Expresión Génica , Humanos , Sarampión/genética , Sarampión/virología , Virus del Sarampión/metabolismo , Estabilidad Proteica , Edición de ARN , ARN Interferente Pequeño/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo
11.
JCI Insight ; 7(12)2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35730567

RESUMEN

Immunosuppressed patients with inflammatory bowel disease (IBD) generate lower amounts of SARS-CoV-2 spike antibodies after mRNA vaccination than healthy controls. We assessed SARS-CoV-2 spike S1 receptor binding domain-specific (S1-RBD-specific) B lymphocytes to identify the underlying cellular defects. Patients with IBD produced fewer anti-S1-RBD antibody-secreting B cells than controls after the first mRNA vaccination and lower amounts of total and neutralizing antibodies after the second. S1-RBD-specific memory B cells were generated to the same degree in IBD and control groups and were numerically stable for 5 months. However, the memory B cells in patients with IBD had a lower S1-RBD-binding capacity than those in controls, which is indicative of a defect in antibody affinity maturation. Administration of a third shot to patients with IBD elevated serum antibodies and generated memory B cells with a normal antigen-binding capacity. These results show that patients with IBD have defects in the formation of antibody-secreting B cells and affinity-matured memory B cells that are corrected by a third vaccination.


Asunto(s)
COVID-19 , Enfermedades Inflamatorias del Intestino , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Células B de Memoria , ARN Mensajero , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
12.
Cell Host Microbe ; 29(12): 1815-1827.e6, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34731647

RESUMEN

Laboratory mice comprise an expeditious model for preclinical vaccine testing; however, vaccine immunogenicity in these models often inadequately translates to humans. Reconstituting physiologic microbial experience to specific pathogen-free (SPF) mice induces durable immunological changes that better recapitulate human immunity. We examined whether mice with diverse microbial experience better model human responses post vaccination. We co-housed laboratory mice with pet-store mice, which have varied microbial exposures, and then assessed immune responses to influenza vaccines. Human transcriptional responses to influenza vaccination are better recapitulated in co-housed mice. Although SPF and co-housed mice were comparably susceptible to acute influenza infection, vaccine-induced humoral responses were dampened in co-housed mice, resulting in poor control upon challenge. Additionally, protective heterosubtypic T cell immunity was compromised in co-housed mice. Because SPF mice exaggerated humoral and T cell protection upon influenza vaccination, reconstituting microbial experience in laboratory mice through co-housing may better inform preclinical vaccine testing.


Asunto(s)
Inmunogenicidad Vacunal , Vacunas contra la Influenza/inmunología , Animales , Femenino , Humanos , Inmunidad Humoral , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Vacunación
13.
Nat Commun ; 12(1): 7325, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34916516

RESUMEN

Single-domain Variable New Antigen Receptors (VNARs) from the immune system of sharks are the smallest naturally occurring binding domains found in nature. Possessing flexible paratopes that can recognize protein motifs inaccessible to classical antibodies, VNARs have yet to be exploited for the development of SARS-CoV-2 therapeutics. Here, we detail the identification of a series of VNARs from a VNAR phage display library screened against the SARS-CoV-2 receptor binding domain (RBD). The ability of the VNARs to neutralize pseudotype and authentic live SARS-CoV-2 virus rivalled or exceeded that of full-length immunoglobulins and other single-domain antibodies. Crystallographic analysis of two VNARs found that they recognized separate epitopes on the RBD and had distinctly different mechanisms of virus neutralization unique to VNARs. Structural and biochemical data suggest that VNARs would be effective therapeutic agents against emerging SARS-CoV-2 mutants, including the Delta variant, and coronaviruses across multiple phylogenetic lineages. This study highlights the utility of VNARs as effective therapeutics against coronaviruses and may serve as a critical milestone for nearing a paradigm shift of the greater biologic landscape.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Cristalografía por Rayos X , Receptores de Antígenos/química , Receptores de Antígenos/inmunología , Tiburones/inmunología , Enzima Convertidora de Angiotensina 2 , Animales , COVID-19 , Epítopos , Mutación , Filogenia , Unión Proteica , SARS-CoV-2 , Alineación de Secuencia , Anticuerpos de Dominio Único , Glicoproteína de la Espiga del Coronavirus/inmunología
14.
bioRxiv ; 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33948591

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Neutralizing antibodies target the receptor binding domain of the spike (S) protein, a focus of successful vaccine efforts. Concerns have arisen that S-specific vaccine immunity may fail to neutralize emerging variants. We show that vaccination with HAd5 expressing the nucleocapsid (N) protein can establish protective immunity, defined by reduced weight loss and viral load, in both Syrian hamsters and k18-hACE2 mice. Challenge of vaccinated mice was associated with rapid N-specific T cell recall responses in the respiratory mucosa. This study supports the rationale for including additional viral antigens, even if they are not a target of neutralizing antibodies, to broaden epitope coverage and immune effector mechanisms.

15.
Vaccines (Basel) ; 8(1)2020 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-32024265

RESUMEN

Most infections occur at mucosal surfaces. Providing a barrier of protection at these surfaces may be a useful strategy to combat the earliest events in infection when there are relatively few pathogens to address. The majority of vaccines are delivered systemically by the intramuscular (IM) route. While IM vaccination can drive mucosal immune responses, mucosal immunization at intranasal (IN) or oral sites can lead to better immune responses at mucosal sites of viral entry. In macaques, IN immunization with replicating single-cycle adenovirus (SC-Ads) and protein boosts generated favorable mucosal immune responses. However, there was an apparent "distance effect" in generating mucosal immune responses. IN immunization generated antibodies against HIV envelope (env) nearby in the saliva, but weaker responses in samples collected from the distant vaginal samples. To improve on this, we tested here if SC-Ads expressing genetic adjuvants could be used to amplify antibody responses in distant vaginal samples when they are codelivered with SC-Ads expressing clade C HIV env immunogen. SC-Ads env 1157 was coadministered with SC-Ads expressing 4-1BBL, granulocyte macrophage colony-stimulating factor (GMCSF), IL-21, or Clostridoides difficile (C. diff.) toxin fragments by IN or IM routes. These data show that vaginal antibody responses were markedly amplified after a single immunization by the IN or IM routes, with SC-Ad expressing HIV env if this vaccine is complemented with SC-Ads expressing genetic adjuvants. Furthermore, the site and combination of adjuvants appear to "tune" these antibody responses towards an IgA or IgG isotype bias. Boosting these priming SC-Ad responses with another SC-Ad or with SOSIP native-like env proteins markedly amplifies env antibody levels in vaginal washes. Together, this data may be useful in informing the choice of route of delivery adenovirus and peptide vaccines against HIV-1.

16.
bioRxiv ; 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32817936

RESUMEN

We determined the antigen binding activity of convalescent plasma units from 47 individuals with a history of non-severe COVID-19 using three clinical diagnostic serology assays (Beckman, DiaSorin, and Roche) with different SARS-CoV-2 targets. We compared these results with functional neutralization activity using a fluorescent reporter strain of SARS-CoV-2 in a microwell assay. This revealed positive correlations of varying strength (Spearman r = 0.37-0.52) between binding and neutralization. Donors age 48-75 had the highest neutralization activity. Units in the highest tertile of binding activity for each assay were enriched (75-82%) for those with the highest levels of neutralization.

17.
Vaccines (Basel) ; 8(3)2020 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-32842679

RESUMEN

Clostridium difficile causes nearly 500,000 infections and nearly 30,000 deaths each year in the U.S., which is estimated to cost $4.8 billion. C. difficile infection (CDI) arises from bacteria colonizing the large intestine and releasing two toxins, toxin A (TcdA) and toxin B (TcdB). Generating humoral immunity against C. difficile's toxins provides protection against primary infection and recurrence. Thus, a vaccine may offer the best opportunity for sustained, long-term protection. We developed a novel single-cycle adenovirus (SC-Ad) vaccine against C. difficile expressing the receptor-binding domains from TcdA and TcdB. The single immunization of mice generated sustained toxin-binding antibody responses and protected them from lethal toxin challenge for up to 38 weeks. Immunized Syrian hamsters produced significant toxin-neutralizing antibodies that increased over 36 weeks. Single intramuscular immunization provided complete protection against lethal BI/NAP1/027 spore challenge 45 weeks later. These data suggest that this replicating vaccine may prove useful against CDI in humans.

18.
bioRxiv ; 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33106802

RESUMEN

The human airway epithelium is the initial site of SARS-CoV-2 infection. We used flow cytometry and single cell RNA-sequencing to understand how the heterogeneity of this diverse cell population contributes to elements of viral tropism and pathogenesis, antiviral immunity, and treatment response to remdesivir. We found that, while a variety of epithelial cell types are susceptible to infection, ciliated cells are the predominant cell target of SARS-CoV-2. The host protease TMPRSS2 was required for infection of these cells. Importantly, remdesivir treatment effectively inhibited viral replication across cell types, and blunted hyperinflammatory responses. Induction of interferon responses within infected cells was rare and there was significant heterogeneity in the antiviral gene signatures, varying with the burden of infection in each cell. We also found that heavily infected secretory cells expressed abundant IL-6, a potential mediator of COVID-19 pathogenesis.

19.
Glob Vaccines Immunol ; 3(1)2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30740532

RESUMEN

HIV-1 infections occur during sexual contact at mucosal surfaces. Vaccines need to provide mucosal barrier protection and stimulate systemic immune responses to control HIV spread. Most vaccines are delivered by systemic immunization via intramuscular (IM) injection route. While this can drive systemic and mucosal immune responses, there are data show that mucosal immunization may be superior at driving responses at mucosal barriers. To explore this question, we immunized mice with replicating single-cycle adenovirus (SC Ad) vaccines expressing clade B HIV-1 envelope (Env) by intramuscular (IM), intranasal (IN), or intravaginal (IVAG) routes to compare vaccine responses. SC-Ads generated significant antibodies against Env after only a single immunization by the IN route, but not the other routes. These animals were boosted by the same route or by the mucosal IVAG routes. IM and IN primed animals generated strong antibody responses regardless of the boosting route. In contrast, IVAG primed animals failed to generate robust antibodies whether they were boosted by the IVAG or IM routes. These data suggest there may be benefits in first educating the immune system at mucosal sites during HIV vaccination. IN and IM prime-boost were then compared in Syrian hamsters which support SC-Ad DNA replication. In this case, IN immunization again was the only route that generated significant Env antibodies after a single immunization. Following a boost by IN or IM routes, IN primed animals had significantly higher antibody responses than the IM primed animals. Env antibodies could still be detected one year after immunization, but only in animals that received at least one mucosal IN immunization. These data suggest that there is merit in vaccination by mucosal routes.

20.
Virology ; 514: 118-123, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29172089

RESUMEN

We previously selected muscle binding peptides 12.51 and 12.52 from "context-specific" phage display libraries for introduction into adenovirus (Ad) vectors. In this work, these peptides were inserted into the hypervariable region (HVR) 5 loop of the Ad5 hexon protein to display 720 peptides per virions. HVR-12.51 and 12.52 increased transduction of C2C12 cells up to 20-fold when compared to unmodified Ad5. 12.51 increased in vivo muscle transduction 2 to 7-fold over unmodified Ad after intramuscular injection in mice and hamsters. 12.52 did not increase muscle transduction. Notably, insertion of 12.51 into the hexon reduced liver transduction 80-fold when compared to unmodified Ad5 after intravenous injection. Increased muscle transduction in mice translated into increased immune responses after gene-based vaccination. These data suggest there are merits to retargeting and detargeting benefits to modifying the hexons of Ads with peptide ligands.


Asunto(s)
Adenoviridae/genética , Terapia Genética/instrumentación , Vectores Genéticos/genética , Músculo Esquelético/virología , Adenoviridae/metabolismo , Animales , Línea Celular Tumoral , Femenino , Vectores Genéticos/metabolismo , Hígado/virología , Ratones , Péptidos/genética , Péptidos/metabolismo , Transducción Genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda