RESUMEN
The first production of defibrillated celluloses from microalgal biomass using acid-free, TEMPO-free and bleach-free hydrothermal microwave processing is reported. Two routes were explored: i. direct microwave process of native microalgae ("standard"), and ii. scCO2 pre-treatment followed by microwave processing. ScCO2 was investigated as it is commonly used to extract lipids and generates considerable quantities of spent algal biomass. Defibrillation was evidenced in both cases to afford cellulosic strands, which progressively decreased in their width and length as the microwave processing temperature increased from 160 °C to 220 °C. Lower temperatures revealed aspect ratios similar to microfibrillated cellulose whilst at the highest temperature (220 °C), a mixture of microfibrillated cellulose and nanocrystals were evidenced. XRD studies showed similar patterns to cellulose I but also some unresolved peaks. The crystallinity index (CrI), determined by XRD, increased with increasing microwave processing temperature. The water holding capacity (WHC) of all materials was approximately 4.5 g H2O/g sample. The materials were able to form partially stable hydrogels, but only with those processed above 200 °C and at a concentration of 3 wt% in water. This unique work provides a new set of materials with potential applications in the packaging, food, pharmaceutical and cosmetic industries.
Asunto(s)
Microalgas/metabolismo , Microalgas/efectos de la radiación , Microondas , Celulosa/biosíntesis , Celulosa/química , Temperatura , Agua/químicaRESUMEN
Significant amounts of paper deinking residue (DIR) has been and is still being generated from paper deinking processes, representing both an economic and environmental burden for recycled paper mills. Our research on low-temperature (<200 °C) microwave-assisted (MW-assisted) pyrolysis of DIR allows for simultaneously efficient fast separation and recovery of the organic and inorganic content of DIR at relatively low temperature and within 15 min. Our study is the first highly detailed account of the use low-temperature MW-assisted pyrolysis to effect this change. The obtained liquid and solid products were characterized by a variety of analytical techniques (e.g., attenuated total reflection infrared, gas chromatography-mass spectrometry, liquid-state nuclear magnetic resonance (NMR), X-ray diffraction, solid-state cross-polarization/magic-angle spinning (13)C NMR, and Bloch-decay (13)C NMR). The results reveal that the process efficiently separates the inorganic minerals as microwave residue (mainly calcite and kaolinite) from organic matter, and hence the microwave residue could be reused to produce new paper/cardboard products. The organic fraction bio-oil generated is energy-densified and rich in carbohydrates and is a potential source for valuable aromatic compounds.
Asunto(s)
Microondas , Papel , Reciclaje , Cromatografía de Gases y Espectrometría de Masas , Espectroscopía de Resonancia Magnética , Aceites/química , Aceites/aislamiento & purificación , Eliminación de Residuos/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Difracción de Rayos XRESUMEN
A sustainable, bio-based, mesoporous material, Starbon A800, was explored for use as an adsorbent in solid phase extraction (SPE). A solution containing seven nitrosamines was first used as a standard to optimise conditions for extraction efficiency with Starbon A800. After optimising conditions, 25 compounds of varying polarity (terpenes, phenolics, pesticides, PAHs, amines, and nitrosamines) were extracted with SPE using either Starbon® A800, C18 or Porous Graphitic Carbon (PGC) as the adsorbent, for comparison purposes. At the same time, 3 different elution solvents (heptane, dichloromethane, and ethanol) were used for each type of adsorbent. Hansen solubility parameters can be used to choose an appropriate elution solvent for the selected SPE adsorbent. The best average SPE recoveries found for the 25 various compounds were 83%, 79%, and 65% using Starbon A800, PGC, and C18 adsorbents respectively and these had dichloromethane as the elution solvent. The identification and quantification of components was carried out using UV-visible spectroscopy, two-dimensional gas chromatography (GCxGC) with time of flight/mass spectrometry (TOF/MS) or a nitrogen chemiluminescence detector (NCD). The optimized method was successfully applied to extract volatile organic compounds from red wine and tap water using Starbon A800. Starbon A800 was shown to be a promising, low-cost, green, scalable, alternative adsorbent for the extraction of various types of organic compounds of a wide range of polarities using SPE.
RESUMEN
The exploitation of unavoidable food supply chain wastes resulting from primary and secondary processing for chemicals, materials, and bioenergy is an important concept in the drive towards circular-based, resource-efficient biorefineries rather than petroleum refineries. The potential production of hydrogels (materials) from unavoidable food supply chain wastes, which are naturally rich in biopolymers such as cellulose, hemicellulose, pectin, and lignin, represents an interesting opportunity. However, these intertwined and interconnected biopolymers require separation and deconstruction prior to any useful application. Thus, this study aims to explore the formation of hydrogels from defibrillated celluloses (MW-DFCs) produced via acid-free stepwise microwave hydrothermal processing of blackcurrant pomace residues. Initially, pectin was removed from blackcurrant pomace residues (MW, 100-160 °C), and the resultant depectinated residues were reprocessed at 160 °C. The pectin yield increased from 2.36 wt.% (MW, 100 °C) to 3.07 wt.% (MW, 140 °C) and then decreased to 2.05 wt.% (MW, 160 °C). The isolated pectins were characterized by attenuated total reflectance infrared spectroscopy (ATR-IR), thermogravimetric analysis (TGA), and 13C NMR (D2O). The cellulosic-rich residues were reprocessed (MW, 160 °C) and further characterized by ATR-IR, TGA, and Klason lignin analysis. All the MW-DFCs contained significant lignin content, which prevented hydrogel formation. However, subsequent bleaching (H2O2/OH-) afforded off-white samples with improved gelling ability at the concentration of 5% w/v. Confocal laser microscopy (CLSM) revealed the removal of lignin and a more pronounced cellulosic-rich material. In conclusion, the microwave-assisted defibrillation of blackcurrant pomace, an exploitable unavoidable food supply chain waste, affords cellulosic-rich materials with the propensity to form hydrogels which may serve useful applications when put back into food products, pharmaceuticals, cosmetics, and home and personal care products.
RESUMEN
ZnO photoanodes in photoelectrochemical (PEC) water splitting for green-hydrogen production are limited due to the large bandgap that is only confined to UV light. One of the strategies for broadening the photo absorption range and improving light harvesting is to modify a one-dimensional (1D) nanostructure to a three-dimensional (3D) ZnO superstructure coupling with a narrow-bandgap material, in this case, a graphene quantum dot photosensitizer. Herein, we studied the effect of sulfur and nitrogen co-doped graphene quantum dot (S,N-GQD) sensitization on the surface of ZnO nanopencil (ZnO NPc) to give a photoanode in the visible light spectrum. In addition, the photo energy harvesting between the 3D-ZnO and 1D-ZnO, as represented by neat ZnO NPc and ZnO nanorods (ZnO NRs), was also compared. Several instruments, including SEM-EDS, FTIR, and XRD revealed the successful loading of S,N-GQDs on the ZnO NPc surfaces through the layer-by-layer assembly technique. The advantages are S,N-GQDs's band gap energy (2.92 eV) decreasing ZnO NPc's band gap value from 3.169 eV to 3.155 eV after being composited with S,N-GQDs and facilitating the generation of electron-hole pairs for PEC activity under visible light irradiation. Furthermore, the electronic properties of ZnO NPc/S,N-GQDs were improved significantly over those of bare ZnO NPc and ZnO NR. The PEC measurements revealed that the ZnO NPc/S,N-GQDs stood out with a maximum current density of 1.82 mA cm-2 at +1.2 V (vs. Ag/AgCl), representing a 153% and 357% improvement over the bare ZnO NPc (1.19 mA cm-2) and the ZnO NR (0.51 mA cm-2), respectively. These results suggest that ZnO NPc/S,N-GQDs could have potential for water splitting applications.
RESUMEN
Carbotrace 480 is a commercially available fluorescent optotracer that specifically binds to cellulose's glycosidic linkages. Herein, the use of Carbotrace 480 is reported as an analytical tool for linking cellulose content to hydrogel formation capability in defibrillated celluloses obtained from proprietary microalgae. Defibrillated celluloses obtained from acid-free hydrothermal microwave processing at low temperature (160 °C) showed poor hydrogel formation attributed to a low cellulose concentration as evidenced through the lack of Carbotrace fluorescence. High temperature (220 °C) processing afforded reasonable gels commensurate with a higher cellulose loading and stronger response to Carbotrace.
RESUMEN
Phosphorus is fast becoming a critical element, as the global supply and demand are reaching unsustainable levels. Herein, the synthesis, characterization, and applicability of a novel biomass-derived mesoporous carbonaceous material decorated with CeO2 (CeO2-S400) as an efficient catalyst for the dephosphorylation of 4-nitrophenyl phosphate disodium salt hexahydrate are reported. The presence and distribution of CeO2 are evidenced by inductively coupled plasma mass spectrometry (ICP-MS) (118.7 mg/g), high-resolution transmission electron microscopy (HRTEM), and energy dispersive X-ray (EDX) mapping. The apparent rate constant for the efficient catalysis of 4-nitrophenyl phosphate disodium salt hexahydrate was 0.097 ± 0.01 for CeO2-ES and 0.15 ± 0.03 min-1 for CeO2-S400, which followed first-order kinetics. Rate constants normalized by the catalytic loading (k m) were 80.84 and 15.00 g-1 min-1 for CeO2-ES and CeO2-S400, respectively, and the normalized rate constants with respect to surface area were 3.38 and 0.04 m-2 min-1 for CeO2-ES and CeO2-S400, respectively. This indicates that the presence of CeO2 nanoparticles has a catalytic effect on the dephosphorylation reaction.
RESUMEN
Commercial ACs typically possess high surface areas and high microporosity. However, ACs with appreciable mesoporosity are growing in consideration and demand because they are beneficial for the adsorption of large species, such as heavy metal ions. Thus, in this study, degreased coffee grounds (DCG) were used as precursors for the production of ACs by means of chemical activation at 600 °C for the efficient removal of manganese in the form of MnO4 2-. One of the most common activating agents, ZnCl2, is replaced by benign and sustainable CaCl2 and K2CO3. Three ratios 1 : 1, 1 : 0.5 and 1 : 0.1 of precursor-to-activating agent (g g-1) were investigated. Porosimetry indicates 1 : 1 CaCl2 DCGAC is highly mesoporous (mesopore volume 0.469 cm3 g-1). CaCl2 DCGAC and K2CO3 DCGAC shows high adsorption capacities of 0.494 g g-1 and 0.423 g g-1, respectively for the uptake of MnO4 2- in aqueous media. The adsorption process follows pseudo-second order kinetics inline with the Freundlich isotherm (R 2 > 0.9). Thermodynamic data revealed negative values of ΔG (approx -0.1751 kJ mol-1) demonstrating that the adsorption process on 1 : 1 CaCl2DCGAC was spontaneous.
RESUMEN
For the first time, this work investigates the achievability of developing a biorefinery concept around almond hulls by hydrothermal treatment (HTT), thoroughly scrutinising the influence of the temperature (200-300⯰C), pressure (100-180â¯bar), time (20-180â¯min) and solid loading (5-25â¯wt%). This process allowed the conversion of almond hulls into four main products: gas (2-13%), bio-oil (2-12%), aqueous (4-69%) and hydro-char (17-89%). The gas consisted of a mix of H2, CO2, CO and CH4 with a LHV fluctuating from 1 to 13â¯MJ/m3 STP. The bio-oil comprised a mixture of alkanes, aldehydes, ketones, phenols, furans, benzenes and nitrogen compounds with a HHV between 21 and 31â¯MJ/kg. The solid product resembled an energetic hydro-char material (HHV 21-31â¯MJ/kg), while the aqueous effluent comprised a mixture of value-added chemicals, including saccharides and small oxygenated compounds. The production of biofuels can be maximised at 256⯰C and 100â¯bar, using a 5â¯wt% solid loading for 157â¯min, conditions at which 43% of the original feedstock can be converted into an elevated energy-filled bio-oil (11% yield, 30â¯MJ/kg), along with a high energetic hydro-char (32% yield, 29â¯MJ/kg). Regarding value-added chemicals, up to 10% of the almond hulls can be converted into a bio-oil with a high proportion (45%) of phenolic species at 250⯰C and 144â¯bar with a solid loading of 5â¯wt% for 167â¯min. In comparison, a sugar-rich (81 C-wt%) solution can be produced in high yield (54%), by treating a 24â¯wt% suspension at 252⯰C and 180â¯bar for 153â¯min. Therefore, the versatility, novelty and intrinsic green and holistic nature of this 'almond-refinery' concept exemplify a landmark achievement in future energy and chemicals production from biomass, which might help render the complete bio-refinery for almond hulls more cost-effectively and ecologically feasible.
Asunto(s)
Biocombustibles , Prunus dulcis , Biomasa , Temperatura , AguaRESUMEN
An integrated biorefinery approach using spent industrial ginger waste for resource recovery is reported. Valuable products including ginger oil, starch, microfibrillated cellulose (MFC), bio-oil and hydrochar were obtained. Approximately 4 % ginger oil, with a profile similar to commercial ginger oil, can be recovered via Soxhlet or Supercritical CO2 + 10 %EtOH extraction. The oil-free ginger residues were processed using two microwave techniques: starch, MFC and sugar-rich hydrolysates were firstly gained through hydrothermal microwave processing (120-200 °C in water alone), whilst chemical-rich bio-oils and energy-dense hydrochar (20-24.5 MJ kg-1) were obtained via conventional microwave pyrolysis (220-280 °C). The ginger MFC exhibited increased propensity to form microfibrillated cellulose (as evidenced by Transmission Electron Microscopy) with increasing temperature. Nanocrystalline cellulose was produced at the highest processing temperature (200 °C). These changes are commensurate with the leaching and decomposition of the amorphous regions within cellulose. The molecules and materials isolated have further downstream applications and, thus, compared to current low value resolution methods (dumping, burning or animal feed), spent industrial ginger waste is a significant resource for consideration within a biorefinery concept.
Asunto(s)
Residuos Industriales , Zingiber officinale , Animales , Biocombustibles , Calor , Microondas , PirólisisRESUMEN
Floridoside (2-α-O-D-galactopyranosyl glycerol) is a glycerol glycoside that is biosynthesised by most species of red algae and has been implicated as an intracellular regulator of various homeostatic functions. Here, we report the identification of two unforeseen crystal forms of the ubiquitous natural osmolyte floridoside including a seemingly unheralded second anhydrous conformational polymorph and the unambiguous description of an elusive monohydrated variant. By employing a variety of thermal and spectroscopic techniques, we begin to explore both their macro and molecular physicochemical properties, which are notably different to that of the previously reported polymorph. This work advances the characterisation of this important natural biomolecule which could aid in facilitating optimised utilisation across a variety of anthropocentric applications and improve comprehension of its role in-vivo as a preeminent compatible solute.
RESUMEN
Deep eutectic solvents (DES) are one of the most promising green technologies to emerge in recent years given their combination of environmentally friendly credentials and useful functionalities. Considering the continued search for new DES - especially those that exemplify the aforementioned characteristics, we report the preparation of DES based on natural analogues of l-ascorbic acid for the first time. The onset of eutectic melting occurred at temperatures far below the melting point of the individual components and resulted in the generation of glass forming fluids with glass transition temperatures, viscosities and flow behavior that are comparable to similar systems. This work expands the current array of DES that can be produced using naturally occurring components, which given their potential to be bio-derived, interesting physicochemical properties (e. g. propensity to supercool and vitrify) and apparent antibacterial nature, may provide utility within a range of applications.
RESUMEN
Antibiotic Microbial Resistance (AMR) is a major global challenge as it constitutes a severe threat to global public health if not addressed. To fight against AMR bacteria, new antimicrobial agents are continually needed, and their efficacy must be tested. Historically, many transition metals have been employed, but their cytotoxicity is an issue and hence must be reduced, typically by combination with organic polymers. Cellulose of natural origin, especially those derived from unavoidable residues in the food supply chain, appears to be a good capping agent for the green synthesis of silver nanoparticles. Herein, we describe a green synthesis method to produce a novel biocomposite, using ascorbic acid as reducing agent and microfibrillated cellulose as a capping agent and demonstrate this material to be an efficient antimicrobial agent. Silver nanoparticles were obtained in the cellulose matrix with an average size of 140 nm and with antimicrobial activity against both sensitive and resistant Gram positive (using 1500 ppm) as well as sensitive and resistant Gram negative (using 125 ppm) bacteria. Also, an inverted disk-diffusion methodology was applied to overcome the low-solubility of cellulose compounds. This novel silver nanoparticle-cellulose biocomposite synthesized by a green methodology shows the potential to be applied in the future development of biomedical instruments and therapeutics.
Asunto(s)
Antiinfecciosos , Celulosa , Farmacorresistencia Bacteriana/efectos de los fármacos , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/crecimiento & desarrollo , Plata , Antiinfecciosos/química , Antiinfecciosos/farmacología , Celulosa/química , Celulosa/farmacología , Plata/química , Plata/farmacologíaRESUMEN
As part of the biorefinery concept for spent coffee grounds (SCG), production of activated carbon (AC) was investigated from the degreased coffee grounds (DCG) left behind after oil extraction (primarily for biodiesel). The oils were extracted through conventional solvent extraction with GC/GC-MS confirming the oil was comparable to oils produced industrially. More significantly, analysis showed the DCG AC to have a four-fold increase in mesoporosity compared with the SCG AC with mesopore volumes of 0.6 and 0.15â cm3 g-1 , respectively. Adsorption trials showed a ten-fold increase in capacity for AuIII from 8.7 to 88.6â mg g-1 with subsequent experiments confirming that DCG AC displayed standard behavior for mesoporous materials of increasing adsorption capacity with decreasing pH. This raises the potential for valorization of SCG into a functional material for water remediation without the need for templating agents or expansion pretreatments with the added bonus of an additional material being produced simultaneously.
RESUMEN
The bio-based mesoporous materials made from polysaccharides, Starbons® can be modified by two different routes to give high levels of N-content, unexpectedly including significant quantities of nitrile groups which can improve the materials performance in applications including metal capture.
Asunto(s)
Metales/química , Nitrilos/química , Polisacáridos/química , Catálisis , Sustancias Macromoleculares , Porosidad , Propiedades de SuperficieRESUMEN
Citrus juices from whole oranges and grapefruits (discarded from open market) and aqueous extracts from citrus processing waste (mainly peels) were used for bacterial cellulose production by Komagataeibacter sucrofermentans DSM 15973. Grapefruit and orange juices yielded higher bacterial cellulose concentration (6.7 and 6.1 g/L, respectively) than lemon, grapefruit, and orange peels aqueous extracts (5.2, 5.0, and 2.9 g/L, respectively). Compared to the cellulosic fraction isolated from depectinated orange peel, bacterial cellulose produced from orange peel aqueous extract presented improved water-holding capacity (26.5 g water/g, 3-fold higher), degree of polymerization (up to 6-fold higher), and crystallinity index (35-86% depending on the method used). The presence of absorption bands at 3240 and 3270 cm-1 in the IR spectrum of bacterial cellulose indicated that the bacterial strain K. sucrofermentans synthesizes both Iα and Iß cellulose types, whereas the signals in the 13C NMR spectrum demonstrated that Iα cellulose is the dominant type.
RESUMEN
Iron-N-heterocyclic carbene complexes (Fe-NHCs) have come to prominence because of their applicability in diverse catalytic reactions, ranging from C-C cross-coupling and C-X bond formation to substitution, reduction, polymerization, and dehydration reactions. The detailed synthesis, characterization, and application of novel heterogeneous Fe-NHC catalysts immobilized on mesoporous expanded high-amylose corn starch (HACS) and Starbon 350 (S350) for facile fructose conversion into 5-hydroxymethylfurfural (HMF) is reported. Both catalyst types showed good performance for the dehydration of fructose to HMF when the reaction was tested at 100 °C with varying time (10â min, 20â min, 0.5â h, 1â h, 3â h and 6â h). For Fe-NHC/S350, the highest HMF yield was 81.7 % (t=0.5â h), with a TOF of 169â h-1 , fructose conversion of 95 %, and HMF selectivity of 85.7 %, whereas for Fe-NHC/expanded HACS, the highest yield was 86 % (t=0.5â h), with a TOF of 206â h-1 , fructose conversion of 87 %, and HMF selectivity of 99 %. Iron loadings of 0.26 and 0.30â mmol g-1 were achieved for Fe-NHC/expanded starch and Fe-NHC/S350, respectively.
Asunto(s)
Compuestos Férricos/química , Fructosa/química , Furaldehído/análogos & derivados , Metano/análogos & derivados , Amilosa , Catálisis , Furaldehído/síntesis química , Metano/química , AlmidónRESUMEN
A detailed design-of-experiment (DoE) study to investigate the cause-effect interactions of three process variables, that is, temperature (120-200 °C), holding time (0-30â min), and concentration (1.4-5.0â wt %), on the processing of citrus cellulosic matter using acid-free microwave-assisted selective scissoring (Hy-MASS) is reported. Analysis of variance (ANOVA) showed that post-microwave processing, the yield of cellulosic matter (25-72 %), decomposition temperature (345-373 °C), and crystallinity index (34-67 %) were strongly affected by temperature. SEM and TEM analyses showed that the isolated cellulosic matter was heterogeneous and consisted of a mixture of micro- and nanofibers more akin to microfibrillated cellulose (MFC) at low processing temperatures and tending towards aggregated cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) at higher processing temperatures. The water holding capacity of the processed cellulosic matter (15-27â gH2O g-1 ) was higher than the original feedstock or previously reported values. The average molecular weight of the cellulosic matter (113.6-1095.9â kg mol-1 ) decreased significantly by a factor of 10 at operating temperatures above 180 °C, invoking significant scissoring of the cellulosic chains. The process energy input and costs varied between 0.142-0.624â kWh and 13-373â kg-1 , respectively, and strongly depended on the reaction time.
RESUMEN
Water activity has historically been and continues to be recognised as a key concept in the area of food science. Despite its ubiquitous utilisation, it still appears as though there is confusion concerning its molecular basis, even within simple, single component solutions. Here, by close examination of the well-known Norrish equation and subsequent application of a rigorous statistical theory, we are able to shed light on such an origin. Our findings highlight the importance of solute-solute interactions thus questioning traditional, empirically based "free water" and "water structure" hypotheses. Conversely, they support the theory of "solute hydration and clustering" which advocates the interplay of solute-solute and solute-water interactions but crucially, they do so in a manner which is free of any estimations and approximations.
Asunto(s)
Tecnología de Alimentos , Agua/química , Soluciones , Solventes , TermodinámicaRESUMEN
With crude oil reserves dwindling, the hunt for a sustainable alternative feedstock for fuels and materials for our society continues to expand. The biorefinery concept has enjoyed both a surge in popularity and also vocal opposition to the idea of diverting food-grade land and crops for this purpose. The idea of using the inevitable wastes arising from biomass processing, particularly farming and food production, is, therefore, gaining more attention as the feedstock for the biorefinery. For the three main components of biomass-carbohydrates, lipids, and proteins-there are long-established processes for using some of these by-products. However, the recent advances in chemical technologies are expanding both the feedstocks available for processing and the products that be obtained. Herein, this review presents some of the more recent developments in processing these molecules for green materials, as well as case studies that bring these technologies and materials together into final products for applied usage.