Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Transplant ; 19(8): 2174-2185, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30821922

RESUMEN

The shortage of available organs remains the greatest barrier to expanding access to transplant. Despite advances in genetic editing and immunosuppression, survival in experimental models of kidney xenotransplant has generally been limited to <100 days. We found that pretransplant selection of recipients with low titers of anti-pig antibodies significantly improved survival in a pig-to-rhesus macaque kidney transplant model (6 days vs median survival time 235 days). Immunosuppression included transient pan-T cell depletion and an anti-CD154-based maintenance regimen. Selective depletion of CD4+ T cells but not CD8+ T cells resulted in long-term survival (median survival time >400 days vs 6 days). These studies suggested that CD4+ T cells may have a more prominent role in xenograft rejection compared with CD8+ T cells. Although animals that received selective depletion of CD8+ T cells showed signs of early cellular rejection (marked CD4+ infiltrates), animals receiving selective CD4+ depletion exhibited normal biopsy results until late, when signs of chronic antibody rejection were present. In vitro study results suggested that rhesus CD4+ T cells required the presence of SLA class II to mount an effective proliferative response. The combination of low pretransplant anti-pig antibody and CD4 depletion resulted in consistent, long-term xenograft survival.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Rechazo de Injerto/etiología , Supervivencia de Injerto/inmunología , Tolerancia Inmunológica/inmunología , Trasplante de Riñón/efectos adversos , Depleción Linfocítica/efectos adversos , Animales , Rechazo de Injerto/patología , Xenoinjertos , Macaca mulatta , Porcinos
2.
bioRxiv ; 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37205571

RESUMEN

Costimulation blockade using belatacept results in improved renal function after kidney transplant as well as decreased likelihood of death/graft loss and reduced cardiovascular risk; however, higher rates and grades of acute rejection have prevented its widespread clinical adoption. Treatment with belatacept blocks both positive (CD28) and negative (CTLA-4) T cell signaling. CD28-selective therapies may offer improved potency by blocking CD28-mediated costimulation while leaving CTLA-4 mediated coinhibitory signals intact. Here we test a novel domain antibody directed at CD28 (anti-CD28 dAb (BMS-931699)) in a non-human primate kidney transplant model. Sixteen macaques underwent native nephrectomy and received life-sustaining renal allotransplantation from an MHC-mismatched donor. Animals were treated with belatacept alone, anti-CD28 dAb alone, or anti-CD28 dAb plus clinically relevant maintenance (MMF, Steroids) and induction therapy with either anti-IL-2R or T cell depletion. Treatment with anti-CD28 dAb extended survival compared to belatacept monotherapy (MST 187 vs. 29 days, p=0.07). The combination of anti-CD28 dAb and conventional immunosuppression further prolonged survival to MST ∼270 days. Animals maintained protective immunity with no significant infectious issues. These data demonstrate CD28-directed therapy is a safe and effective next-generation costimulatory blockade strategy with a demonstrated survival benefit and presumed advantage over belatacept by maintaining intact CTLA-4 coinhibitory signaling.

3.
J Clin Invest ; 128(10): 4557-4572, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30222140

RESUMEN

Interrupting T cell costimulatory signals as a strategy to control undesired immune responses, such as occur in autoimmunity or transplantation, has the potential to alleviate many of the unwanted side effects associated with current immunosuppressive therapies. Belatacept, a high-affinity version of CTLA4-Ig that blocks ligand ligation to CD28, has been approved for use in kidney transplant recipients. Despite the long-term benefits associated with its use, such as improved renal function and lower cardiovascular risk, a subset of patients treated with belatacept experience elevated rates of acute T cell-mediated rejection, tempering enthusiasm for its use. Here we demonstrate that costimulation-independent T cell alloreactivity relies on signaling through CD122, the shared IL-2 and IL-15 receptor ß-chain. Combined costimulatory and CD122 blockade improved survival of transplanted tissue in mice and nonhuman primates by controlling proliferation and effector function of CD8+ T cells. The high-affinity IL-2 receptor was dispensable for memory CD8+ T cell responses, whereas signaling through CD122 as a component of the high-affinity IL-15 receptor was critical for costimulation-independent memory CD8+ T cell recall, distinguishing specific roles for IL-2 and IL-15 in T cell activation. These studies outline a novel approach for clinical optimization of costimulatory blockade strategies in transplantation by targeting CD122.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Rechazo de Injerto/inmunología , Memoria Inmunológica , Subunidad beta del Receptor de Interleucina-2/inmunología , Trasplante de Riñón , Transducción de Señal/inmunología , Animales , Linfocitos T CD8-positivos/patología , Rechazo de Injerto/genética , Rechazo de Injerto/patología , Interleucina-15/genética , Interleucina-15/inmunología , Interleucina-2/genética , Interleucina-2/inmunología , Subunidad beta del Receptor de Interleucina-2/genética , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Receptores de Interleucina-2/genética , Receptores de Interleucina-2/inmunología , Transducción de Señal/genética
4.
JCI Insight ; 2(5): e90317, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28289708

RESUMEN

The potential of costimulation blockade to serve as a novel transplant immunosuppression strategy has been explored for over 20 years, culminating in the recent clinical approval of belatacept for renal transplant patients. Despite improving long-term graft function and survival compared with calcineurin inhibitors, clinical acceptance of belatacept has been hindered by elevated rates of acute rejection. We examined the signaling pathways required to activate costimulation blockade-resistant alloreactive T cells and identified the OX40/OX40L secondary costimulatory pathway as a promising target. We next sought to improve the clinical efficacy of traditional costimulation blockade using belatacept by coupling it with anti-OX40L. Using a murine transplant model, we demonstrate that combined blockade enhances the suppression of alloreactive T cell proliferation and effector functions including both cytokine release and cytotoxic degranulation. We also show that anti-OX40L may be particularly useful in targeting alloreactive memory T cell responses that are relatively unaffected by traditional costimulation blockade regimens. Finally, we translated this therapy to a clinically relevant nonhuman primate renal transplant model, validating the efficacy of this regimen in a potentially novel steroid- and calcineurin inhibitor-free immunosuppression regimen.


Asunto(s)
Aloinjertos/inmunología , Rechazo de Injerto/inmunología , Trasplante de Riñón , Ligando OX40/antagonistas & inhibidores , Transducción de Señal , Animales , Supervivencia de Injerto , Humanos , Memoria Inmunológica , Prueba de Cultivo Mixto de Linfocitos , Macaca mulatta , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Modelos Animales , Ligando OX40/metabolismo , Linfocitos T/inmunología
5.
Transplant Direct ; 3(6): e161, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28620645

RESUMEN

BACKGROUND: The interplay between viral infection and alloimmunity is known to influence the fate of transplanted organs. Clarifying how local virus-associated inflammation/injury and antiviral immunity can alter host alloimmune responses in transplantation remains a critical question. METHODS: We used a mouse model of polyomavirus (PyV) infection and kidney transplantation to investigate the roles of direct viral pathology, the antiviral immune response, and alloimmunity in the pathogenesis of PyV-associated allograft injury. We have previously shown that an effective primary T cell response is required in PyV-associated graft injury. RESULTS: Here we show that the transfer of primed antidonor, but not antiviral, T cells results in PyV-associated allograft injury. In further studies, we use a surrogate minor antigen model (ovalbumin) and show that only antidonor specific T cells and not antiviral specific T cells are sufficient to mediate injury. Lastly, we demonstrate that local but not systemic virus-mediated inflammation and injury within the graft itself are required. CONCLUSIONS: These data suggest that in this mouse model, the predominant mechanism of allograft injury in PyV-associated injury is due to an augmented alloimmune T cell response driven by virus-induced inflammation/injury within the graft. These studies highlight the important interplay between viral infection and alloimmunity in a model system.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda